MAPPINGS AND DECOMPOSITIONS OF CONTINUITY ON ALMOST LINDELÖF SPACES

A. J. FAWAKHREH AND A. KILIÇMAN

Received 18 September 2005; Revised 4 January 2006; Accepted 12 March 2006

A topological space X is said to be almost Lindelöf if for every open cover $\{U_\alpha : \alpha \in \Delta\}$ of X there exists a countable subset $\{\alpha_n : n \in \mathbb{N}\} \subseteq \Delta$ such that $X = \bigcup_{n \in \mathbb{N}} \text{Cl}(U_{\alpha_n})$. In this paper we study the effect of mappings and some decompositions of continuity on almost Lindelöf spaces. The main result is that a θ-continuous image of an almost Lindelöf space is almost Lindelöf.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Among the various covering properties of topological spaces a lot of attention has been given to those covers which involve open and regularly open sets. In 1982 Balasubramanian [4] introduced and studied the notion of nearly Lindelöf spaces and in 1984 Willard and Dissanayake [21] gave the notion of almost Lindelöf spaces. Then in 1996 Cammaroto and Santoro [5] studied and gave further new results about these spaces which are considered as one of the main generalizations of Lindelöf spaces.

Moreover, decompositions of continuity have been recently of major interest among general topologists. They are being studied by many authors, including Singal and Singal [19], Popa and Stan [16], Noiri [14], Long and Herrington [11], Mashhour et al. [12], Abd El-Monsef et al. [1], Dontchev [6], Dontchev and Przemski [7], Nasef and Noiri [13], Park and Ha [15], and Baker [2, 3]. In fact, mathematicians introduced in several papers different and interesting new decompositions of continuity as well as generalized continuous functions.

Throughout the present paper, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated. The topological space (X, τ) will be replaced by X if there is no chance for confusion. The interior and the closure of any subset A of (X, τ) will be denoted by $\text{Int}(A)$ and $\text{Cl}(A)$, respectively.

The purpose of this paper is to study the effect of mappings and some decompositions of continuity on almost Lindelöf spaces. We also show that some mappings preserve this property. The main result is that the image of an almost Lindelöf space under a θ-continuous function is almost Lindelöf.
2. Preliminaries

Recall that a subset $A \subseteq X$ is called regularly open (regularly closed) if $A = \text{Int}(\text{Cl}(A))$ ($A = \text{Cl}(\text{Int}(A))$). The topology generated by the regularly open subsets of a space (X, τ) is called the semiregularization of (X, τ) and is denoted by (X, τ_s). A space (X, τ) is said to be semiregular if the regularly open sets form a base for the topology or equivalently $\tau = \tau_s$. It is called almost regular if for any regularly closed set C and any singleton $\{x\}$ disjoint from C, there exist two disjoint open sets U and V such that $C \subseteq U$ and $x \in V$. Note that a space X is regular if and only if it is semiregular and almost regular [17]. Moreover, a space X is said to be submaximal if every dense subset of X is open in X and it is called extremally disconnected if the closure of each open set of X is open in X. A space X is said to be submaximal if every dense subset of X is open in X and it is called extremally disconnected if the closure of each open set of X is open in X. A space X is said to be extremally disconnected if the closure of each open set of X is open in X. A space X is said to be mildly normal [20] if whenever A and B are disjoint regularly closed sets in X, then there are two disjoint open sets U and V with $A \subseteq U$ and $B \subseteq V$. And it is called nearly paracompact [18] if every regularly open cover of X admits an open locally finite refinement.

Definition 2.1 (see [4]). A topological space X is said to be nearly Lindelöf if for every open cover $\{U_\alpha : \alpha \in \Delta\}$ of X, there exists a countable subset $\{\alpha_n : n \in \mathbb{N}\} \subseteq \Delta$ such that $X = \bigcup_{n \in \mathbb{N}} \text{Int}(\text{Cl}(U_{\alpha_n}))$. That is, every regularly open cover of X admits a countable subcover.

Mappings and decompositions of continuity on nearly Lindelöf spaces were recently studied by the authors in [8].

Definition 2.2. Let (X, τ) and (Y, σ) be topological spaces. A function $f : X \rightarrow Y$ is said to be

1. (1) almost continuous [19] if $f^{-1}(V)$ is open in X for every regularly open set V in Y;
2. (2) precontinuous [12] (resp., β-continuous [1]) if $f^{-1}(V) \subseteq \text{Int}(\text{Cl}(f^{-1}(V)))$ (resp., $f^{-1}(V) \subseteq \text{Cl}(\text{Int}(f^{-1}(V)))$) for every open set V in Y;
3. (3) almost precontinuous (resp., almost β-continuous) [13] if for each $x \in X$ and each regularly open set V in Y containing $f(x)$, there exists a set U in X containing x with $U \subseteq \text{Int}(\text{Cl}(U))$ (resp., $U \subseteq \text{Cl}(\text{Int}(\text{Cl}(U)))$) such that $f(U) \subseteq V$;
4. (4) δ-continuous [14] (resp., almost δ-continuous) if for each $x \in X$ and each regularly open set V of Y containing $f(x)$, there exists a regularly open set U of X containing x such that $f(U) \subseteq V$ (resp., $f(U) \subseteq \text{Cl}(V)$);
5. (5) θ-continuous [9] (resp., strong θ-continuous [11]) if for every $x \in X$ and every open subset V of Y containing $f(x)$, there exists an open subset U in X containing x such that $f(\text{Cl}(U)) \subseteq \text{Cl}(V)$ (resp., $f(\text{Cl}(U)) \subseteq \text{Cl}(V)$);
6. (6) weakly quasicontinuous [16] if for each $x \in X$, each open set G of X containing x and each open set V of Y containing $f(x)$, there exists an open set U of X such that $\phi \neq U \subseteq G$ and $f(U) \subseteq \text{Cl}(V)$;
7. (7) contra-continuous [6] if $f^{-1}(V)$ is closed in X for every open set V in Y;
8. (8) subcontra-continuous [3] if there exists an open base \mathcal{B} for the topology on Y such that $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$.

Note that almost δ-continuity is equivalent to weakly δ-continuity due to Baker [2]. Also, in [8], the following diagram in which none of its implications is reversible, is given.
It illustrates the relations among some of these mappings:

\[
\text{Continuous} \quad \Rightarrow \quad \text{Precontinuous} \quad \Rightarrow \quad \beta\text{-continuous} \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{Almost continuous} \quad \Rightarrow \quad \text{Almost precontinuous} \quad \Rightarrow \quad \text{Almost } \beta\text{-continuous}
\]

Moreover, it is clear that every strong \(\theta\)-continuous mapping is \(\theta\)-continuous and \(\delta\)-continuous. It is clear also, that every \(\delta\)-continuous mapping is almost \(\delta\)-continuous but the converse is not true as Example 3.5 below shows. Contra-continuity implies subcontra-continuity but the converse, in general, is not true (see [3]). So, with Lemma 3.12 and Example 3.13 below, we obtain the following diagram in which none of these implications is reversible:

\[
\text{Strong } \theta\text{-continuous} \quad \Rightarrow \quad \theta\text{-continuous} \\
\downarrow \quad \downarrow \\
\delta\text{-continuous} \quad \Rightarrow \quad \text{Almost } \delta\text{-continuous}
\]

3. Almost Lindelöf spaces

Definition 3.1 (see [21]). A topological space \(X\) is said to be almost Lindelöf if for every open cover \(\{U_\alpha : \alpha \in \Delta\}\) of \(X\) there exists a countable subset \(\{\alpha_n : n \in \mathbb{N}\} \subseteq \Delta\) such that \(X = \bigcup_{n \in \mathbb{N}} \text{Cl}(U_{\alpha_n})\).

Note that every Lindelöf space is nearly Lindelöf and every nearly Lindelöf space is almost Lindelöf but the converses, in general, are not true (see [5]). Moreover, it is well known that the continuous image of a Lindelöf space is Lindelöf and in [8] it was shown that the \(\delta\)-continuous image of a nearly Lindelöf space is nearly Lindelöf. In the case of almost Lindelöf spaces we give the following theorem.

Theorem 3.2. Let \(f : X \rightarrow Y\) be a \(\theta\)-continuous surjection from \(X\) into \(Y\). If \(X\) is almost Lindelöf, then \(Y\) is almost Lindelöf.

Proof. Let \(\{V_\alpha : \alpha \in \Delta\}\) be an open cover of \(Y\). Let \(x \in X\) and \(V_{\alpha_x}\) be an open set in \(Y\) such that \(f(x) \in V_{\alpha_x}\). Since \(f\) is \(\theta\)-continuous, there exists an open set \(U_{\alpha_x}\) of \(X\) containing \(x\) such that \(f(\text{Cl}(U_{\alpha_x})) \subseteq \text{Cl}(V_{\alpha_x})\). Now \(\{U_{\alpha_x} : x \in X\}\) is an open cover of the almost Lindelöf space \(X\). So there exists a countable subset \(\{U_{\alpha_n} : n \in \mathbb{N}\}\) such that \(X = \bigcup_{n \in \mathbb{N}} \text{Cl}(U_{\alpha_n})\).

Thus

\[
Y = f(X) = f\left(\bigcup_{n \in \mathbb{N}} \text{Cl}(U_{\alpha_n})\right) = \bigcup_{n \in \mathbb{N}} f(\text{Cl}(U_{\alpha_n})) \subseteq \bigcup_{n \in \mathbb{N}} \text{Cl}(V_{\alpha_n}).
\]

This implies that \(Y\) is almost Lindelöf and completes the proof. \(\square\)

Corollary 3.3. The \(\theta\)-continuous image of an almost Lindelöf space is almost Lindelöf.

Lemma 3.4 (see [10]). If \(f : (X, \tau) \rightarrow (Y, \sigma)\) is almost continuous, then \(f\) is \(\theta\)-continuous.
4 Mappings on almost Lindelöf spaces

The converse of Lemma 3.4 is not true, in general, as the following example shows.

Example 3.5. Let \(X = \{a, b, c\} \). Define on \(X \) the following two topologies \(\tau = \{\emptyset, \{b\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \). Let \(f : (X, \tau) \to (X, \sigma) \) be a function defined as follows: \(f(a) = b \) and \(f(b) = f(c) = c \). Then \(f \) is \(\theta \)-continuous but it is not almost continuous since \(f^{-1}(\{b\}) = \{a\} \) is not open in \((X, \tau)\) whereas \(\{b\} \) is regularly open in \((X, \sigma)\). Since \(f \) is \(\theta \)-continuous, by Lemma 3.12 below, \(f \) is almost \(\delta \)-continuous but it is not \(\delta \)-continuous since, there is a regularly open set \(\{b\} \) of \(X \) containing \(f(\{a\}) \) but there is no regularly open set \(U \) of \(X \) containing \(\{a\} \) such that \(f(U) \subseteq \{b\} \).

Corollary 3.6. Let \(f : X \to Y \) be an almost continuous surjection from \(X \) into \(Y \). If \(X \) is almost Lindelöf, then \(Y \) is almost Lindelöf.

Since every continuous function is almost continuous and by Lemma 3.4, we conclude the following corollary.

Corollary 3.7. Almost Lindelöf property is a topological property.

Note also that an almost regular space is almost Lindelöf if and only if it is nearly Lindelöf (see [4]). Moreover, an almost regular and nearly Lindelöf space is nearly paracompact and mildly normal (see [5]). Thus we have the following corollary by using Theorem 3.2.

Corollary 3.8. Let \(f : X \to Y \) be \(\theta \)-continuous surjection from \(X \) into an almost regular space \(Y \). If \(X \) is almost Lindelöf, then \(Y \) is nearly Lindelöf, mildly normal, and nearly paracompact.

Proposition 3.9. Let \(f : X \to Y \) be strong \(\theta \)-continuous surjection from \(X \) into \(Y \). If \(X \) is almost Lindelöf, then \(Y \) is Lindelöf.

Proof. Let \(\{V_\alpha : \alpha \in \Delta\} \) be an open cover of \(Y \). Let \(x \in X \) and \(V_\alpha \) be an open set in \(Y \) such that \(f(x) \in V_\alpha \). Since \(f \) is strong \(\theta \)-continuous, there exists an open set \(U_\alpha \) of \(X \) containing \(x \) such that \(f(\text{Cl}(U_\alpha)) \subseteq V_\alpha \). Now \(\{U_\alpha : x \in X\} \) is an open cover of the almost Lindelöf space \(X \). So there exists a countable subset \(\{U_{\alpha_n} : n \in \mathbb{N}\} \) such that \(X = \bigcup_{n \in \mathbb{N}} \text{Cl}(U_{\alpha_n}) \). Thus

\[
Y = f(X) = f \left(\bigcup_{n \in \mathbb{N}} \text{Cl}(U_{\alpha_n}) \right) = \bigcup_{n \in \mathbb{N}} f \left(\text{Cl}(U_{\alpha_n}) \right) \subseteq \bigcup_{n \in \mathbb{N}} V_{\alpha_n}. \tag{3.2}
\]

This implies that \(Y \) is Lindelöf and completes the proof.

Corollary 3.10. The strong \(\theta \)-continuous image of an almost Lindelöf space is Lindelöf.

Note that if \(f : (X, \tau) \to (Y, \sigma) \) is a strong \(\theta \)-continuous function, then \(f \) is continuous but the converse is not true, in general, as in Example 3.5.

Next we prove that almost \(\delta \)-continuous image of a nearly Lindelöf space is almost Lindelöf.

Proposition 3.11. Let \(f : X \to Y \) be an almost \(\delta \)-continuous surjection from \(X \) into \(Y \). If \(X \) is nearly Lindelöf, then \(Y \) is almost Lindelöf.
Proof. Let $\mathcal{V} = \{ V_\alpha : \alpha \in \Delta \}$ be an open cover of Y. Let $x \in X$ and $V_\alpha \in \mathcal{V}$ such that $f(x) \in V_\alpha \subseteq \text{Int}(\text{Cl}(V_\alpha))$. Since f is almost δ-continuous and $\text{Int}(\text{Cl}(V_\alpha))$ is regularly open in (Y, σ) containing $f(x)$, then for every $x \in X$, there exists a regularly open subset U_α of X containing x such that $f(U_\alpha) \subseteq \text{Cl}(V_\alpha)$. So $\{ U_\alpha : x \in X \}$ is a regularly open cover of the nearly Lindelöf space X. Thus there exists a countable subset $\{ x_n : n \in N \}$ such that $X = \bigcup_{n \in N} U_{\alpha_n}$. So

$$Y = f(X) = f \left(\bigcup_{n \in N} U_{\alpha_n} \right) = \bigcup_{n \in N} f(U_{\alpha_n}) \subseteq \bigcup_{n \in N} \text{Cl}(V_{\alpha_n}).$$

(3.3)

This shows that Y is almost Lindelöf.

Now we prove that θ-continuity implies almost δ-continuity.

Lemma 3.12. If $f : (X, \tau) \to (Y, \sigma)$ is θ-continuous, then f is almost δ-continuous.

Proof. Let $x \in X$ and V be a regularly open subset of Y containing $f(x)$. Since f is θ-continuous, there exists an open subset U of X containing x such that $f(\text{Cl}(U)) \subseteq \text{Cl}(V)$. Thus $U \subseteq \text{Int}(\text{Cl}(U))$ and $\text{Int}(\text{Cl}(U))$ is a regularly open subset of X containing x such that $f(\text{Int}(\text{Cl}(U))) \subseteq f(\text{Cl}(U)) \subseteq \text{Cl}(V)$. This implies that f is almost δ-continuous and completes the proof.

The converse of Lemma 3.12 is not true, in general, as the following example shows.

Example 3.13. Let $X = \{ a, b, c, d \}$ and $Y = \{ x, y, z \}$. Then we define the topologies $\tau = \{ \phi, \{ c \}, \{ d \}, \{ a, c \}, \{ c, d \}, \{ a, c, d \}, X \}$, $\sigma = \{ \phi, \{ x \}, \{ y \}, \{ x, y \}, Y \}$ on X, Y, respectively. Now if $f : (X, \tau) \to (Y, \sigma)$ is a function defined as $f(a) = z$ and $f(b) = f(c) = f(d) = y$, then f is almost δ-continuous but it is not θ-continuous.

Next we prove the following proposition.

Proposition 3.14. Let $f : X \to Y$ be a weakly quasicontinuous and precontinuous surjection from X into Y. If X is nearly Lindelöf, then Y is almost Lindelöf.

Proof. Let $\{ V_\alpha : \alpha \in \Delta \}$ be an open cover of Y. So $\{ f^{-1}(V_\alpha) : \alpha \in \Delta \}$ is a cover of X. Since f is precontinuous, $f^{-1}(V_\alpha) \subseteq \text{Int}(\text{Cl}(f^{-1}(V_\alpha)))$. So $\{ \text{Int}(\text{Cl}(f^{-1}(V_\alpha))) : \alpha \in \Delta \}$ is a regularly open cover of the nearly Lindelöf space X. It follows that there exists a countable subset $\{ \alpha_n : n \in N \} \subseteq \Delta$ such that $X = \bigcup_{n \in N} \text{Int}(\text{Cl}(f^{-1}(V_{\alpha_n})))$. Since f is weakly quasicontinuous, $\text{Int}(\text{Cl}(f^{-1}(V_{\alpha_n}))) \subseteq f^{-1}(\text{Cl}(V_{\alpha_n}))$ (see [15, Theorem 3.3]). So $X = \bigcup_{n \in N} f^{-1}(\text{Cl}(V_{\alpha_n}))$. Thus

$$Y = f(X) = f \left(\bigcup_{n \in N} f^{-1}(\text{Cl}(V_{\alpha_n})) \right) = \bigcup_{n \in N} f \left(f^{-1}(\text{Cl}(V_{\alpha_n})) \right) \subseteq \bigcup_{n \in N} \text{Cl}(V_{\alpha_n}).$$

(3.4)

This implies that Y is almost Lindelöf.

We also prove the following proposition.

Proposition 3.15. The image of an almost Lindelöf space under a precontinuous and subcontra-continuous mapping is Lindelöf.
6 Mappings on almost Lindelöf spaces

Proof. Let \(f : X \to Y \) be a subcontra-continuous and precontinuous function from \(X \) to \(Y \). Assume that \(X \) is almost Lindelöf. Let \(\mathcal{B} \) be an open base for the topology on \(Y \) for which \(f^{-1}(V) \) is closed in \(X \) for every \(V \in \mathcal{B} \). Let \(\mathcal{U} = \{ U_{\alpha} : \alpha \in \Delta \} \) be an open cover of \(f(X) \). For each \(x \in X \), let \(U_{\alpha_x} \in \mathcal{U} \) such that \(f(x) \in U_{\alpha_x} \). Then there exists \(V_{\alpha_x} \in \mathcal{B} \) such that \(f(x) \in V_{\alpha_x} \subseteq U_{\alpha_x} \). Since \(f \) is subcontra-continuous, \(f^{-1}(V_{\alpha_x}) \) is closed in \(X \). Since \(f \) is precontinuous, \(f^{-1}(V_{\alpha_x}) \subseteq \text{Int}(\text{Cl}(f^{-1}(V_{\alpha_x}))) = \text{Int}(f^{-1}(V_{\alpha_x})) \). So \(f^{-1}(V_{\alpha_x}) = \text{Int}(f^{-1}(V_{\alpha_x})) \). It follows that \(f^{-1}(V_{\alpha_x}) \) is clopen and hence \(\{ f^{-1}(V_{\alpha_x}) : x \in X \} \) is a clopen cover of the almost Lindelöf space \(X \). So there exists a countable subfamily \(\{ x_n : n \in \mathbb{N} \} \) for which

\[
X = \bigcup_{n \in \mathbb{N}} \text{Cl}\left(f^{-1}(V_{\alpha_{x_n}}) \right) = \bigcup_{n \in \mathbb{N}} f^{-1}(V_{\alpha_{x_n}}) \subseteq \bigcup_{n \in \mathbb{N}} f^{-1}(U_{\alpha_{x_n}}). \tag{3.5}
\]

Thus we have

\[
f(X) = f\left(\bigcup_{n \in \mathbb{N}} f^{-1}(U_{\alpha_{x_n}}) \right) = \bigcup_{n \in \mathbb{N}} f\left(f^{-1}(U_{\alpha_{x_n}}) \right) \subseteq \bigcup_{n \in \mathbb{N}} U_{\alpha_{x_n}}. \tag{3.6}
\]

This implies that \(f(X) \) is Lindelöf and completes the proof. \(\square \)

Since contra-continuous functions are subcontra-continuous, we have the following corollary.

Corollary 3.16. The image of an almost Lindelöf space under a contra-continuous and precontinuous mapping is Lindelöf.

The following two propositions are analogous results of nearly Lindelöf spaces (see [8]).

Proposition 3.17. Let \(f : X \to Y \) be an almost \(\beta \)-continuous surjection. If \(X \) is submaximal, extremally disconnected, and almost Lindelöf, then \(Y \) is almost Lindelöf.

Proof. The proof follows immediately from [13, Theorem 4.3] and Corollary 3.6. \(\square \)

Proposition 3.18. Let \(f : X \to Y \) be an almost precontinuous surjection. If \(X \) is submaximal and almost Lindelöf, then \(Y \) is almost Lindelöf.

Proof. The proof follows immediately from [13, Theorem 4.4] and Corollary 3.6. \(\square \)

References

A. J. Fawakhreh and A. Kılıçman

A. J. Fawakhreh: Department of Mathematics, Philadelphia University, P.O. Box 1, Amman 19392, Jordan

E-mail address: afawakhreh@philadelphia.edu.jo

A. Kılıçman: Department of Mathematics, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

E-mail address: akilic@fsas.upm.edu.my
Special Issue on
Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors
Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br