ALMOST TRIANGULAR MATRICES OVER
DEDEKIND DOMAINS

FRANK DEMEYER and HANIYA KAKAKHAIL

(Received 25 November 1997 and in revised form 13 March 1998)

Abstract. Every matrix over a Dedekind domain is equivalent to a direct sum of matrices
\(A = (a_{i,j}) \), where \(a_{i,j} = 0 \) whenever \(j > i + 1 \).

Keywords and phrases. Matrices, Dedekind domains, equivalence.

1991 Mathematics Subject Classification. 13F05, 15A21.

1. Introduction. Two \(m \times n \) matrices \(A \) and \(B \) over a ring \(R \) are called equivalent
if \(B = PAQ \) for invertible matrices \(P \) and \(Q \) over \(R \). From now on, assume that \(R \)
denotes a Dedekind domain with quotient field \(K \). If \(I = (a,b) \) is a non principal ideal
in \(R \), then, in contrast with the situation for Principal Ideal Domains, the \(1 \times 2 \) matrix
\([a,b] \) is not equivalent over \(R \) to a matrix whose off diagonal entries are 0. Using the
separated divisor theorem in the form given by Levy in [2], other facts about matrices
over Dedekind domains in [2], and elementary properties of ideals in Dedekind domain
[1], we show that any \(m \times n \) matrix over a Dedekind domain is equivalent to a direct
sum of matrices \(A = (a_{i,j}) \) with \(a_{i,j} = 0 \) when \(j > i + 1 \). If the direct summand
\(A \) has rank \(r \), then the number of rows, respectively columns, of \(A \) is either \(r \) or \(r + 1 \).
The corresponding result for similarity of matrices over principal ideal rings is that
every \(n \times n \) matrix over a principal ideal ring is similar to an upper triangular matrix
[3, p. 42].

2. Diagonalization of matrices. If \(A \) is an \(m \times n \) matrix, then \(A \) can be viewed as
an \(R \)-module homomorphism \(A : R^n \to R^m \) by left multiplication. If \(M_A \) denotes the
submodule of \(R^m \) generated by the columns of \(A \), then \(M_A \) is the image of \(A \) in \(R^m \)
and the isomorphism class of the cokernel \(S_A = R^m / M_A \) of \(A \) determines the equivalence
class of \(A \).

Separated divisor theorem [2]. There is a chain of integral \(R \)-ideals \(L_1 \subseteq L_2 \subseteq \cdots \subseteq L_r \) and a fractional \(R \)-ideal \(H \) such that
\[
S_A = \begin{cases} \oplus_{i=1}^{r'} \frac{K}{L_i} \oplus H \oplus R^{m-r-1}, & m < r \\ \oplus_{i=1}^{r'} \frac{K}{E_i}, & m = r, \end{cases}
\]
(2.1)
where \(H = \prod_{i=1}^{r'} L_i \) if \(r = n \) and \(H \supseteq R \) if \(r = 0 \) or \(r = m \).
The isomorphism class of \(S_A \), the ideals \(\{L_i\}_{i=1}^{r'} \) (as sets), and the isomorphism class
of \(H \) both determine and are determined by the equivalence class of \(A \).
We also need the following elementary facts about ideals in Dedekind domains.

Lemma 1 [1, p.150, 154]. Let I,J be integral ideals in R. Then

1. There is an α in the quotient field K of R such that αI is integral and $\alpha I + J = R$;
2. There is an R-module isomorphism $\gamma : IJ \oplus R \to I \oplus J$, given by $\gamma(u,v) = (x_1 u - u, \alpha u - x_2 v)$, where α is as in (1) and $x_1 \in I, x_2 \in J$ are chosen with $\alpha x_1 - x_2 = 1$.

Note. The R-linear homomorphism γ is given by the matrix $\left(\begin{array}{cc} -1 & x_1 \\ \alpha & -x_2 \end{array} \right)$, where $\alpha \in K$.

Theorem 2.2. Every $m \times n$ matrix A over a Dedekind domain is equivalent to a direct sum of matrices (a_{ij}) with $a_{jj} = 0$ whenever $j > i + 1$.

Proof. An $m \times n$ matrix A is called indecomposable if A is not equivalent to a direct sum of matrices B_1, B_2. That is, A is not equivalent to a direct sum of matrices B_1, B_2. If $A = 0$, the result is clear. Assume that $A \neq 0$. It is sufficient to verify the result for indecomposable matrices. In this case, if r is the rank of A over the quotient field K of R, then [2, Lem. 2.1] asserts that $m = r$ or $r + 1$ and $n = r$ or $r + 1$. There are then four possible cases to check.

Case 1. Assume that $m = r$ and $n = r$. Then $S_A = \oplus_{i=1}^r R/L_i$, with L_1, \ldots, L_r integral R-ideals generated by $a \in R$. Let $\phi_0 : R^r \to \oplus_{i=1}^r L_i \oplus R^{r-1}$ be given by $\phi_0(r_1, \ldots, r_r) = (ar_1, r_2, \ldots, r_r)$ and let $\phi_j : L_1 \oplus \cdots \oplus L_{j-1} \oplus \oplus_{i=j}^r L_i \oplus R \to R^{r-j+1}$ be given by $\phi_j = I_{j-1} \oplus y_j \oplus I_{r-j-1}$, where $y_j : \oplus_{i=1}^r L_i \oplus R \to L_j \oplus \oplus_{i=j+1}^r L_i$ is the map given in Lemma 1 and I_{j-1}, I_{r-j-1} are the identity maps of indicated rank. Let $\phi : R^r \to L_1 \oplus \cdots \oplus L_r \subset R^r$ be given by $\phi = \phi \cap \phi_2 \cdots \cdot \phi_0$. Then the matrix $[\phi]$ may have entries which are not in R, $[\phi]$ has all its entries in R since each L_j is integral. If we write

$$[\phi_j] = \begin{pmatrix} I_j & 0 & 0 & 0 \\ 0 & -1 & x_j^1 & 0 \\ 0 & \alpha_j & -x_j^2 & 0 \\ 0 & 0 & 0 & I_{r-j-1} \end{pmatrix},$$

then a direct calculation shows that

$$[\phi] = \begin{pmatrix} -a & x_1^1 & 0 & 0 & 0 & 0 & 0 \\ -a \alpha_1 & -x_2^1 & x_1^2 & 0 & 0 & 0 & 0 \\ -a \alpha_1 \alpha_2 & \alpha_2 x_1^2 & x_2^2 & x_1^3 & 0 & 0 & 0 \\ -a \alpha_1 \alpha_2 \alpha_3 & \alpha_2 \alpha_3 x_2^2 & x_3^2 & x_1^4 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a \prod_{i=1}^{r-1} \alpha_i & \cdots & \cdots & \cdots & \alpha_{r-2} x_2^{r-2} & x_2^{r-1} \end{pmatrix}.$$

Since $[\phi]$ has the same number of rows and columns and the same cokernel as A, $[\phi]$ is equivalent to A.

Remark. Assume that \(L_i = \langle a_i \rangle \) is principal for each \(i, i = 1, \ldots, r \) and \(a_i \in R \). The isomorphism \(y_j : \prod_{i=j}^{r} L_i \oplus R \rightarrow L_j \oplus \prod_{i=j+1}^{r} L_i \) can be given as \(y_j(u, v) = (\alpha_j u, \beta_j v) \), where \(\alpha_j = 1 / \prod_{i=j+1}^{r} a_i \) and \(\beta_j = \prod_{i=j+1}^{r} a_i \). In this case, \([\varphi] = \text{diag}[a_1, \ldots, a_r] \) with \(a_i | a_{i+1} \) for \(1 \leq i \leq r \). This is the only case which occurs if \(R \) is a PID.

Case 2. Assume that \(m = r \) and \(n = r + 1 \). Then \(S_A = \oplus_{i=1}^{r} R/L_i \) with \(L_i, 1 \leq i \leq r \) integral ideals and \(L_1 \subseteq L_2 \subseteq \cdots \subseteq L_r \). Let \(L_{r+1} \) be integral ideal with \(\prod_{i=1}^{r+1} L_i = \langle a \rangle \) principal, then \(\oplus_{i=1}^{r+1} L_i \equiv R^n \) and there is a chain of \(R \)-homomorphisms

\[
R^n \xrightarrow{\varphi} L_1 \oplus \cdots \oplus L_r \oplus L_{r+1} \xrightarrow{\pi} L_1 \oplus \cdots \oplus L_r \subseteq R^r,
\]

where \(\pi \) is the projection on \(L_1 \oplus \cdots \oplus L_r \) along \(L_{r+1} \). The matrix of \(\pi \circ \varphi \) is an \(m \times n \) matrix obtained by deleting the last row of \([\varphi] \) and, thus, has the same form as in Case 1. Since the cokernel of \(\pi \circ \varphi \) is the same as \(A \) and \([\varphi] \) has the same number of rows and columns as \(A, [\pi \varphi] \) is equivalent to \(A \).

Case 3. Assume that \(m = r + 1 \) and \(n = r \). Then \(S_A = \oplus_{i=1}^{r} R/L_i \oplus H \), where \(L_i, 1 \leq i \leq r \) are integral ideals and \(H \equiv \prod_{i=1}^{r} L_i \). Choose \(a \in R \) with \(L_r H^{-1} a \) integral. Note that \(L_r H^{-1} a \) is a submodule of \(H^{-1} a \). From Case 1, we construct an \(R \)-isomorphism \(\varphi_r : R^r \rightarrow L_1 \oplus \cdots \oplus L_{r-1} \oplus L_r H^{-1} a \subseteq R^{r+1} \) whose matrix has the same form as that of \([\varphi] \) in Case 1. By Lemma 1, there is a chain of isomorphisms \(\psi : H^{-1} a \oplus H \rightarrow H^{-1} Ha \oplus R \rightarrow R \) carrying \(L_r H^{-1} a \) onto a submodule \(N \) of \(R \oplus R \). By [1, Cor. 18.24], \((H^{-1} a \oplus H)/L_r H^{-1} a \equiv R/L_r \oplus H \). Let \(\Phi = (I_{r-1} \oplus \psi) \circ \varphi_r : R^n \rightarrow R^m \). The matrix of \(\Phi \) is \(m \times n \) and the first \(r = n \) rows are the same as \([\varphi_r] \). The last row does not contribute any entries above the main diagonal. So, for each \(j > i + 1 \), the \(i, j \)th entry of \([\Phi] \) is 0. Since the cokernel of \([\Phi] \) is \(S_A \) and \([\Phi] \) has the same number of rows and columns as \(A, [\Phi] \) and \(A \) are equivalent.

Case 4. Let \(S_A = \oplus_{i=1}^{r} R/L_i \oplus H \), where \(L_1, \ldots, L_r \) are integral ideals with \(L_1 \subseteq \cdots \subseteq L_r \) and by replacing \(H \) (if necessary) by an isomorphic copy, \(H \) is an integral ideal. By [1, Thm. 18.20], there is an integral ideal \(H_0 \) with \(H_0 H \) principal and \(H_0 + H = R \). There is an \(a \in R \) such that \(J = (\prod_{i=1}^{r} L_i \cdot H_0)^{-1} a \subseteq H \). As in Case 1, there is an isomorphism \(\varphi_{r+1} : R^{r+1} \rightarrow L_1 \oplus \cdots \oplus L_{r-1} \oplus L_r H_0 \oplus J \). View \(L_1 \leq R \) for \(1 \leq i \leq r \), \(L_i H_0 \leq H_0 \). As in Case 3, there is an isomorphism \(\psi : H_0 \oplus H \rightarrow R \) with \(\psi(L_i H_0) = N \leq R \oplus R \) and \(R \oplus R/N \equiv R/L_r \oplus H \). Let \(\Phi = (I_{r-1} \oplus \psi) \circ \varphi_{r+1} \). Then \(\Phi : R^{r+1} \rightarrow R^{r+1} \) and all the rows, except possibly the last two of \([\Phi] \), are the same as that of \([\varphi] \) in Case 1. So, for each \(j > i + 1 \), the \(i, j \)th entry of \([\Phi] \) is 0. Since the cokernel of \(\Phi \) is \(S_A \), \([\Phi] \) and \(A \) are equivalent.

Remark. While we could have given explicit formula for the entries in the matrices constructed in Cases 2, 3, and 4 as in Case 1, these entries are not canonically determined by \(A \) as a result of the many choices made in their construction. In particular, the choices of \(\alpha \) and \(x_1, x_2 \) in Lemma 1 are not canonically determined by the ideals \(I, J \).

References

Demeyer: Department of Mathematics, Colorado State University, Fort Collins CO 80523, USA
E-mail address: demeyer@math.colostate.edu

Kakakhail: Department of Mathematics, Metropolitan State College, Denver CO 80217, USA
E-mail address: mashroor.kakakhel@uchsc.edu
Mathematical Problems in Engineering

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giulia Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br

Hindawi Publishing Corporation
http://www.hindawi.com