LOW REYNOLDS NUMBER STABILITY OF MHD PLANE POISEUILLE FLOW OF AN OLDROYD FLUID

R. N. RAY, A. SAMAD, and T. K. CHAUDHURY

(Received 19 August 1998)

ABSTRACT. The linear stability of plane Poiseuille flow at low Reynolds number of a conducting Oldroyd fluid in the presence of a transverse magnetic field has been investigated numerically. Spectral tau method with expansions in Chebyshev polynomials is used to solve the Orr-Sommerfeld equation. It is found that viscoelastic parameters have destabilizing effect and magnetic field has a stabilizing effect in the field of flow. But no instabilities are found.

Keywords and phrases. Stability, Reynolds number, MHD, Poiseuille flow, spectral tau method.

2000 Mathematics Subject Classification. Primary 76E25.

1. Introduction. The Orr-Sommerfeld equation has been studied in details for small values of Reynolds number by Southwell and Chitty [9] for the particular case of plane Couette flow. A more general discussion was given later by Pekeris [8] who also gave detailed results for both plane Couette and plane Poiseuille flow. The problem has been considered again independently by Birikh, Gershuni, and Zhuokhovitskii [1]. Ho and Denn [2] studied low Reynolds number stability for plane Poiseuille flow by using a numerical scheme based on the shooting method. They found that at low Reynolds numbers no instabilities occur, but the numerical method led to artificial instabilities. Lee and Finlayson [3] used a similar numerical method to study both Poiseuille and Couette flow, and confirmed the absence of instabilities at low Reynolds number. In this paper, we study the linear stability of plane Poiseuille flow at small Reynolds number of a conducting Oldroyd fluid in the presence of magnetic field. The fourth-order Orr-Sommerfeld equation governing the stability analysis is solved numerically by spectral tau method with expansions in Chebyshev’s polynomials following Orszag [7]. We employ Mathematica (Windows Version) in all our numerical computations to find eigenvalues.

2. Basic equations. Oldroyd model for viscoelastic fluid is described by the constitutive equations (Oldroyd [5, 6])

\[T_{ij}^* = -\Pi \delta_{ij} + s_{ij}, \quad \left(1 + \lambda_1 \frac{d}{dt} \right) s_{ij} = 2\eta \left(1 + \lambda_2 \frac{d}{dt} \right) e_{ij}, \quad e_{ij} = \frac{1}{2} (v_{i,j} + v_{j,i}), \tag{2.1} \]

where \(T_{ij}^* \), \(s_{ij} \), \(e_{ij} \), \(\Pi \), \(\eta \), \(\lambda_1 \), \(\lambda_2 \) (\(\lambda_1 > \lambda_2 > 0 \)) are, respectively, total stress tensor, deviatoric stress tensor, rate of strain tensor, pressure, coefficient of viscosity, stress relaxation time, and strain retardation time, respectively.
The stress equation of motion and the induction equation are
\[\rho(v_{i,t} + v_{i,j}v_{j}) = -\Pi_{i} + s_{ij,j}, \tag{2.2} \]
\[H_{i,t}^* + v_k H_{i,k}^* = H_{k}^* v_{i,k} + \left(\frac{1}{\mu \sigma} \right) H_{i,kk}^*, \tag{2.3} \]
where \(H^* \) is the magnetic field intensity.

Let 2\(l \) be the distance between the parallel plates. The origin is taken at a point midway between the plates. The steady primary flow is taken parallel to the \(x \)-axis with \(y \)-axis normal to the plates. We apply a transverse magnetic field perpendicular to the plates in the direction of \(y \)-axis. Then the velocity field \(v_i \) and the magnetic field \(H_i \) are given by
\[(U, 0, 0) \quad \text{and} \quad (H_1^*, H_0^*, 0). \tag{2.4} \]

Then the equation of motion (2.2) becomes
\[\rho(v_{i,t} + v_k v_{i,k}) = -\Pi_{i}^* + s_{ik,k} + \mu H_k^* H_{i,k}^*, \tag{2.5} \]
where \(\Pi^* = \Pi + (\mu H^* / \alpha_2)^2 / 2 \).

We use the following nondimensional quantities:
\[\mathcal{X} = \frac{x}{l}, \quad \mathcal{Y} = \frac{y}{l}, \quad \mathcal{V}_i = \frac{v_i}{U_0}, \quad \mathcal{T} = \frac{t U_0}{l}, \quad \Pi^* = \frac{\Pi}{\mu U_0^2}, \]
\[\mathcal{S}_{ij} = \frac{s_{ij}}{\rho U_0^2}, \quad H_i^* = \frac{H_i^*}{H_0^*}, \quad \alpha_1 = \frac{\lambda_1 U_0}{l}, \quad \alpha_2 = \frac{\lambda_2 U_0}{l}, \tag{2.6} \]
where the central line velocity is taken as the characteristic velocity \(U_0 \).

Dropping the bar over the symbols, (2.3) and (2.5) become
\[v_{i,t} + v_k v_{i,k} = -\Pi_{i}^* + s_{ik,k} + S H_k^* H_{i,k}^*, \]
\[H_{i,t}^* + v_k H_{i,k}^* = H_{k}^* v_{i,k} + \left(\frac{1}{R_m} \right) H_{i,kk}^*, \tag{2.7} \]
where \(R = \rho U_0 l / \eta \) is the Reynolds number, \(R_m = \mu \sigma U_0 l \) is the magnetic Reynolds number, and \(S = \mu H_0^2 / \rho U_0^2 \) is the magnetic pressure number.

3. Solution of the basic flow. The basic flow is steady and unidirectional and is given by
\[U(y) = \frac{\cosh M - \cosh MY}{\cosh M - 1}, \tag{3.1} \]
where \(M = \mu l H_0^* \sqrt{\sigma / \eta_0} \) is the Hartmann number and the induced magnetic field is
\[H_1(y) = R_m \frac{\sinh M y - \gamma \sinh M}{M (\cosh M - 1)}. \tag{3.2} \]
4. Stability analysis. Following the usual terminology of linear stability analysis, let the disturbed flow be written as a steady basic flow plus a time dependent disturbance, assumed small,

$$v_i = U_i + u_i, \quad \Pi^* = P^* + p^*, \quad s_{ij} = T_{ij} + \tau_{ij}, \quad H_i^* = H_i + h_i. \quad (4.1)$$

In our stability analysis we assume the validity of Squire’s theorem, namely the 2-dimensional disturbances are more unstable than 3-dimensional ones, and therefore consider a 2-dimensional disturbance.

Now, we assume that the disturbances are periodic in the x-direction and write

$$u_j = \hat{u}_j(y) \exp(ik(x-ct)), \quad h_j = \hat{h}_j(y) \exp(ik(x-ct)),$$

$$p^* = \hat{p}^*(y) \exp(ik(x-ct)), \quad \tau_{ij} = \hat{\tau}_{ij}(y) \exp(ik(x-ct)), \quad (4.2)$$

where k is the wave number of the disturbances, $c = c_r + ic_l$ is the complex wave speed and quantities with the carret (\wedge) are complex amplitudes. The motion is stable or unstable according as $c_l < 0$ or $c_l > 0$.

Writing (2.2) in component form and substituting the stress components in equations of motion and induction and then, using (3.2) we get the three stress equations.

Substituting these stress amplitudes in the two components of the equation of motion, after a tedious algebra we have,

$$ikR\omega_1 \left[- (U - c)v' + vU' \right] = k^2 R \omega_1 \hat{p}^* - \left[\omega_2 (v'''' - k^2 v') + (2\omega_1 - \omega_2) v'' + (\omega_1^2 + \omega_2^2) v' + 2\omega_1 (\omega_1 - \omega_2) v' \right]$$

$$+ k^2 \omega_2^2 v + \left(\frac{\omega_1^2}{\omega_1} \right) \left[\omega_2 (v'' - k^2 v') + 2(\omega_1 - \omega_2) v' + (\omega_1^2 - \omega_2^2) v + 2v \omega_1 (\omega_1 - \omega_2) v \right]$$

$$+ 2(\omega_1^2 / \omega_1) \omega_2 v' - (\omega_1'' - \omega_2') v + 2(\omega_1^2 / \omega_1) (\omega_1 - \omega_2) v$$

$$- SR \omega_1 (ikH_1 \hat{h}_2 + \hat{h}_2 - ik \hat{h}_2 H_1'), \quad (4.3)$$

$$ikR \omega_1 (U - c)v = - \omega_1 R \hat{p}^* + \omega_2 (v'' - k^2 v') + 2(\omega_1 - \omega_2) v' + (\omega_1'' - \omega_2') v$$

$$+ 2v \omega_1 (\omega_1 - \omega_2) + SR \omega_1 (ikH_1 \hat{h}_2 + \hat{h}_2), \quad (4.4)$$

where (’) denotes the derivative with respect to y and

$$\omega_1(y) = 1 + ik \alpha_1(U - c), \quad \omega_2(y) = 1 + ik \alpha_2(U - c), \quad (4.5)$$

$\hat{u}_1 = u, \hat{u}_2 = v$, also $v' = -iku$ by equation of continuity.

Eliminating \hat{p}^* from (4.3) and (4.4) and neglecting the terms of second order in α_1 and α_2, we get

$$ikR \omega_1 \left((U - c)(v'' - k^2 v') - vU'' \right)$$

$$= \omega_2 v'''' - 2\omega_2 k^2 v'' + [\omega_2 k^4 + (\omega_1'''' - \omega_2'')] v$$

$$+ SR \omega_1 [ik \hat{h}_2 H_1' - ik H_1 \hat{h}_2 + ik^3 H_1 \hat{h}_2 + k^2 \hat{h}_2 - \hat{h}_2''] \quad (4.6)$$
The equation of induction becomes

\[ik \hat{h}_2 (U - c) = ik H_1 v + v' + \left(\frac{1}{R_m} \right) (\hat{h}_2'' - k^2 \hat{h}_2). \]

(4.7)

A further simplification of (4.6) and (4.7) can be effected by the fact that for most conducting fluids the ratio \(R_m/R = v/\lambda \) is extremely small (Lock [4]). We can thus neglect all terms involving \(H_1 \) in (4.6) and (4.7) and also the term \(ik \hat{h}_2 (U - c) \) on the left-hand side of (4.7). Then, we eliminate \(\hat{h}_2 \) from these two equations and finally get the fourth-order Orr-Sommerfeld equation for the present problem as

\[\omega_2 v'''' + (M^2 \omega_1 - 2 \omega_2 k^2) v'' + (\omega_2 k^4 + \omega_1''' - \omega_2''') v \]

\[- ik R \omega_1 [(U - c) (v'' - k^2 v) - v''] = 0. \]

(4.8)

The boundary conditions are

\[v = v' = 0 \quad \text{at} \quad y = \pm 1. \]

(4.9)

5. Numerical computation. To solve the Orr-Sommerfeld equation (4.8) “spectral method” with expansions of velocity in terms of Chebyshev polynomials is used.

We write

\[v(y) = \sum_{n=0}^{\infty} a_n T_n(y), \quad v''(y) = \sum_{n=0}^{\infty} a_n^{(2)} T_n(y), \quad v''''(y) = \sum_{n=0}^{\infty} a_n^{(4)} T_n(y), \]

(5.1)

where

\[a_n^{(2)} = \left(\frac{1}{q_n} \right) \sum_{p=n+2}^{\infty} p(p^2 - n^2) a_p, \quad n > 0, \]

(5.2)

\[a_n^{(4)} = \left(\frac{1}{24d_n} \right) \sum_{p=n+4}^{\infty} p \left[p^2 (p^2 - 4)^2 - 3n^2 p^4 + 3n^4 p^2 - n^2 (n^2 - 4)^2 \right] a_p, \]

where \(q_0 = 2 \) and \(q_n = 1 \) for \(n > 0 \).

Again, we write the basic flow \(U(y) \) in terms of Chebyshev polynomials as

\[U(y) = \sum_{m=0}^{\infty} b_m T_m(y) \]

(5.3)

and its derivatives in the same way as (5.2).

Then after some involved calculations and using the identity

\[T_n T_m = \frac{(T_{n+m} + T_{n-m})}{2}, \quad T_k = T_{-k} \quad \text{for} \quad k > 0, \]

(5.4)
we get
\[
\sum_{n=0}^{N} \left\{ \left(\frac{A_1}{q_n} \right) \sum_{p=n+4;2}^{N} p \left(p^2 (p^2 - 4)^2 - 3n^2 p^4 + 3n^4 p^2 - n^2 (n^2 - 4)^2 \right) a_p
+ \left(\frac{A_2}{q_n} \right) \sum_{p=n+2;2}^{N} p (p^2 - n^2) a_p + A_3 a_n \right\} T_n
+ \left(\frac{A_4}{q_n} \right) \sum_{m=0;2}^{N} b_m \left(\sum_{p=n+4;2}^{N} p \left(p^2 (p^2 - 4)^2 - 3n^2 p^4 + 3n^4 p^2 - n^2 (n^2 - 4)^2 \right) a_p \right) \frac{(T_{n+m} + T_{n-m})}{2}
+ A_6 a_n \sum_{m=0;2}^{N} b_m \frac{(T_{n+m} + T_{n-m})}{2}
+ A_7 \sum_{m=0;2}^{N} \left(\frac{1}{q_m} \right) \sum_{p=m+4;2}^{N} p \left(p^2 (p^2 - 4)^2 - 3n^2 p^4 + 3n^4 p^2 - n^2 (n^2 - 4)^2 \right) b_p \frac{(T_{n+m} + T_{n-m})}{2}
+ A_8 \sum_{m=0;2}^{N} \left(\frac{1}{q_m} \right) \left(\sum_{p=m+2;2}^{N} p \left(p^2 - n^2 \right) b_p \right) \frac{(T_{n+m} + T_{n-m})}{2}
+ A_9 \sum_{m=0;2}^{N} \left(\frac{g_m}{q_m} \right) \left(\sum_{p=m+2;2}^{N} p \left(p^2 - n^2 \right) b_p \right) \frac{(T_{n+m} + T_{n-m})}{2}
- A_9 \sum_{m=0;2}^{N} \left(k^2 g_m + d_m \right) \frac{(T_{n+m} + T_{n-m})}{2} \right\} = 0,
\]

where
\[
UU'' = \sum_{m=0}^{\infty} d_m T_m(y), \quad U^2 = \sum_{m=0}^{\infty} g_m T_m(y),
\]

and
\[
A_1 = \frac{(1 - ik \alpha_2 c)}{24},
A_2 = M^2 - 2k^2 + ikRc + k^2 R \alpha_1 c^2 - ikM^2 \alpha_1 c + 2ik^3 \alpha_2 c,
A_3 = k^4 - k^4 R \alpha_1 c^2 - ik^3 Rc - ik^5 \alpha_2 c,
A_4 = \frac{ik \alpha_2}{24},
A_5 = ik (M^2 \alpha_1 - R - 2k^2 \alpha_2) - 2k^2 R \alpha_1 c,
A_6 = ik^3 R + ik^5 \alpha_2 + 2k^4 R \alpha_1 c,
\]
By analysing the possible combination of \(T_n, T_{n+m}, T_{n-m} \), we can write (5.5) in a simple form as

\[
\sum_{n=0}^{N} G_n(a_0, a_1, a_2, \ldots, a_N, R, k, c, \alpha_1, \alpha_2, M) T_n = 0. \tag{5.8}
\]

Equating different coefficients of \(T_n \) to zero, we get a system of \(N + 1 \) linear simultaneous equations involving the \(N + 1 \) unknown coefficients \(a_0, a_1, a_2, \ldots, a_N \), which can be written in the matrix form as

\[
\begin{pmatrix}
\tilde{G}_0 & a_0 \\
\tilde{G}_1 & a_1 \\
\tilde{G}_2 & a_2 \\
\vdots & \vdots \\
\tilde{G}_N & a_N
\end{pmatrix} = 0 \quad \text{or} \quad \tilde{G}_{(N+1)\times(N+1)} A_{(N+1)\times1} = 0, \tag{5.9}
\]

where \(\tilde{G}_N \) contains \(R, c, \alpha_1, \alpha_2, k, \) and \(M \).

The system of equations has a nontrivial solution if

\[
\det(\tilde{G}_{(N+1)\times(N+1)}) = 0. \tag{5.10}
\]

Using the following properties of Chebyshev polynomials:

\[
T_n(\pm 1) = (\pm 1)^n \quad \text{and} \quad T'_n(\pm 1) = (\pm 1)^{n-1}n^2, \tag{5.11}
\]

the boundary conditions can be written as

\[
\begin{align*}
\sum_{n=0}^{N} a_n &= 0, \\
\sum_{n=0}^{N} (-1)^na_n &= 0, \\
\sum_{n=0}^{N} n^2a_n &= 0, \\
\sum_{n=0}^{N} n^2(-1)^{n-1}a_n &= 0.
\end{align*} \tag{5.12}
\]

Following spectral method (Orszag [7]), we replace the last four rows in \(\tilde{G} \) by these four boundary conditions (5.12). We use computer software to evaluate the determinant \(\tilde{G} \) and employ the relation (5.10) to find the eigenvalue \(c = c_r + ic_i \) for the problem. We take \(N = 30 \), that is, we have computed a \(31 \times 31 \) matrix so that the eigenvalues are correct up to six places of decimals (Orszag [7, page 697]).

6. Discussion. To find the eigenvalues, we apply the relation (5.10) and use the IBM software Mathematica (Windows Version) to find the eigenvalues.
LOW REYNOLDS NUMBER STABILITY OF MHD PLANE POISEUILLE …

Table 6.1. Eigenvalues with lowest imaginary part for $k = 1.0$, $\alpha_1 = 0.0$, and $\alpha_2 = 0.0$.

<table>
<thead>
<tr>
<th>R</th>
<th>c_r</th>
<th>c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>1.64959</td>
<td>+0.02257</td>
</tr>
<tr>
<td>200</td>
<td>0.664695</td>
<td>−0.03244</td>
</tr>
<tr>
<td>100</td>
<td>0.901812</td>
<td>−0.09284</td>
</tr>
<tr>
<td>10</td>
<td>0.988223</td>
<td>−0.92691</td>
</tr>
<tr>
<td>1</td>
<td>0.989536</td>
<td>−9.32212</td>
</tr>
</tbody>
</table>

Table 6.2. Eigenvalues with lowest imaginary part for $R = 1.0$, $\alpha_1 = 0.02$, and $\alpha_2 = 0.01$.

<table>
<thead>
<tr>
<th>k</th>
<th>c_r</th>
<th>c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.989381</td>
<td>−10.60120</td>
</tr>
<tr>
<td>2</td>
<td>0.954316</td>
<td>−5.91207</td>
</tr>
<tr>
<td>3</td>
<td>0.932722</td>
<td>−6.0101016</td>
</tr>
<tr>
<td>4</td>
<td>−1.81369</td>
<td>−7.51125</td>
</tr>
<tr>
<td>5</td>
<td>−3.1986</td>
<td>−6.43929</td>
</tr>
<tr>
<td>7</td>
<td>−4.05393</td>
<td>−5.44365</td>
</tr>
<tr>
<td>10</td>
<td>−4.24607</td>
<td>−5.08422</td>
</tr>
<tr>
<td>20</td>
<td>−4.16816</td>
<td>−4.539</td>
</tr>
<tr>
<td>30</td>
<td>0.864829</td>
<td>−4.03067</td>
</tr>
</tbody>
</table>

Nonmagnetic case ($M = 0$). Orszag [7] studied extensively this problem for a Newtonian fluid. We begin with the one given by Orszag [7] for Reynolds number $R = 10000$, and wave number $k = 1$. Results displayed in Table 6.1 show that this eigenvalue is highly stable at low-Reynolds number, as noted by the negative value of the imaginary part c_i of the eigenvalue and its large absolute value.

When $\alpha_1 = 0.02$ and $\alpha_2 = 0.01$ the eigenvalues with smallest imaginary parts are shown in Table 6.2 for different values of wave number k with fixed $R = 1$. From Table 6.2 we see that the magnitude of imaginary part of the eigenvalue ($|c_i|$) decreases with the increase of wave number k up to a certain value of $k = 2$ and then it increases up to a certain value of k (here $k = 4$). Thereafter the value of $|c_i|$ again decreases gradually with k. The value of c_i remain negative and is nowhere near zero. Thus the problem is stable.

When $\alpha_1 = 0.2$ and $\alpha_2 = 0.1$ for fixed $R = 1.0$, the results are tabulated in Table 6.3. Comparing these results with the values shown in Table 6.2, we see that the change in c_i becomes quite small near $k = 5$. We also observe that the value of $|c_i|$ decreases with the increase of viscoelastic parameters. This shows that the presence of viscoelastic parameters have destabilizing effect.
Table 6.3. Eigenvalues with lowest imaginary part for $R = 1.0$, $\alpha_1 = 0.2$, and $\alpha_2 = 0.1$.

<table>
<thead>
<tr>
<th>k</th>
<th>c_r</th>
<th>c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.91287</td>
<td>-4.82685</td>
</tr>
<tr>
<td>2</td>
<td>3.64626</td>
<td>-2.51653</td>
</tr>
<tr>
<td>4</td>
<td>2.8191</td>
<td>-1.89419</td>
</tr>
<tr>
<td>5</td>
<td>0.110322</td>
<td>-1.9288</td>
</tr>
<tr>
<td>7</td>
<td>0.179105</td>
<td>-1.35964</td>
</tr>
<tr>
<td>10</td>
<td>0.596842</td>
<td>-0.7665096</td>
</tr>
<tr>
<td>20</td>
<td>1.01726</td>
<td>-0.3395</td>
</tr>
<tr>
<td>30</td>
<td>0.194654</td>
<td>-0.108458</td>
</tr>
</tbody>
</table>

Table 6.4. Eigenvalues with lowest imaginary part for $R = 1.0$, $\alpha_1 = 0.2$, $\alpha_2 = 0.1$, and $M = 1.0$.

<table>
<thead>
<tr>
<th>k</th>
<th>c_r</th>
<th>c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.88929</td>
<td>-4.44235</td>
</tr>
<tr>
<td>2</td>
<td>3.65236</td>
<td>-2.40604</td>
</tr>
<tr>
<td>4</td>
<td>2.83414</td>
<td>-1.87385</td>
</tr>
<tr>
<td>5</td>
<td>2.610322</td>
<td>-1.72964</td>
</tr>
<tr>
<td>7</td>
<td>0.137379</td>
<td>-1.5922</td>
</tr>
<tr>
<td>10</td>
<td>0.609962</td>
<td>-0.771475</td>
</tr>
<tr>
<td>20</td>
<td>1.04896</td>
<td>-0.356781</td>
</tr>
<tr>
<td>30</td>
<td>0.823551</td>
<td>-0.148213</td>
</tr>
</tbody>
</table>

Table 6.5. Eigenvalues with lowest imaginary part for $R = 1.0$, $\alpha_1 = 0.2$, $\alpha_2 = 0.1$, and $k = 10.0$.

<table>
<thead>
<tr>
<th>M</th>
<th>c_r</th>
<th>c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.596842</td>
<td>-0.765096</td>
</tr>
<tr>
<td>1.0</td>
<td>0.609962</td>
<td>-0.771475</td>
</tr>
<tr>
<td>2.0</td>
<td>1.57649</td>
<td>-1.40931</td>
</tr>
<tr>
<td>3.0</td>
<td>1.52753</td>
<td>-1.42581</td>
</tr>
</tbody>
</table>

Hydromagnetic case. The eigenvalues with lowest imaginary parts are tabulated in Table 6.4 for fixed $R = 1$, $\alpha_1 = 0.2$, $\alpha_2 = 0.1$, and $M = 1.0$ for different k. We see from Table 6.4 that the absolute value of the imaginary part of the eigenvalue $|c_i|$ decreases gradually with the increase of wave number k, but no oscillation is observed. Comparing the results with the results in Table 6.3, we see that after $k = 7$ the magnetic field has a stabilizing effect.
For different values of Hartmann number M the eigenvalues with lowest imaginary parts in magnitude are shown in Table 6.5 with fixed $R = 1.0$, $k = 10.0$, $\alpha_1 = 0.2$, and $\alpha_2 = 0.1$. We observe that $|c_i|$ increases with the increase of M. Thus the magnetic field has a stabilizing effect in the flow field. Hence, we conclude that the flow is stable.

Acknowledgement. The first author (RNR) is grateful to the University of Burdwan for financial assistance. Also the authors express science thanks to the University Grant Commission, New-Delhi, for providing publication charges.

References

RAY, SAMAD, AND CHAUDHURY: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BURDWAN, BURDWAN-713104, WEST BENGAL, INDIA
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be