SOME SUFFICIENT CONDITIONS FOR STRONGLY STARLIKENESS

MILUTIN OBRADOVIĆ and SHIGEYOSHI OWA

(Received 22 November 1999)

Abstract. We consider strongly starlikeness of order α, $0 < \alpha \leq 1$, which are analytic in the unit disc and satisfy the condition of the form

$$\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \lambda, \quad 0 < \mu < 1, \ 0 < \lambda < 1.$$

Keywords and phrases. Analytic function, strongly starlikeness, subordination.

2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction and preliminaries. Let H denote the class of functions analytic in the unit disc $U = \{ z : |z| < 1 \}$ and let $A \subset H$ be the class of normalized analytic functions f in U such that $f(0) = f'(0) - 1 = 0$. For $n \geq 1$ we put

$$A_n = \{ f : f(z) = z + a_{n+1}z^{n+1} + \cdots \text{ is analytic in } U \} \quad (1.1)$$

and $A_1 = A$.

A function $f \in A$ is said to be strongly starlike of order α, $0 < \alpha \leq 1$, if and only if

$$zf'(z) < \left(\frac{1+z}{1-z} \right)^{\alpha}, \quad (1.2)$$

where $<$ denotes the usual subordination. We denote this class by $S(\alpha)$. If $\alpha = 1$, then $S(1) \equiv S^*$ is the well-known class of starlike functions in U (cf. [1]).

In this paper, we find a condition so that $f \in A_n$ satisfying

$$f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} < 1 + \lambda z, \quad 0 < \mu < 1, \ 0 < \lambda < 1, \quad (1.3)$$

is in $S(\alpha)$. Also, we consider an integral transformation.

We note that the author in [4] determined the values for λ in (1.3) which implies starlikeness in U. Recently, Ponnusamy and Singh [5] found the condition which implies the strongly starlikeness of order α, but for $\mu < 0$ in (1.3). By using the similar method as in [5] we consider strongly starlikeness in the case (1.3).

First, we cite the following lemma.

Lemma 1.1. Let $Q \in H$ satisfy the subordination condition

$$Q(z) < 1 + \lambda_1 z, \quad Q(0) = 1, \quad (1.4)$$

where $0 < \lambda_1 \leq 1$. For $0 < \alpha \leq 1$, let $p \in H$, $p(0) = 1$ and p satisfy the condition

$$Q(z)p^{\alpha}(z) < 1 + \lambda z, \quad 0 < \lambda \leq 1. \quad (1.5)$$
Then for
\[\sin^{-1} \lambda + \sin^{-1} \lambda_1 \leq \frac{\alpha \pi}{2} \] (1.6)
we have \(\text{Re}\{p(z)\} > 0 \) in \(U \).

This is the special case of the more general lemma given in [5].

2. Results and consequences. For our results we also need the following two lemmas.

Lemma 2.1. Let \(p \in H, \ p(z) = 1 + p_n z^n + \cdots, \ n \geq 1, \) satisfy the condition
\[p(z) - \frac{1}{\mu} z p'(z) < 1 + \lambda z, \quad 0 < \mu < 1, \ 0 < \lambda \leq 1. \] (2.1)

Then
\[p(z) \prec 1 + \lambda_1 z, \] (2.2)
where
\[\lambda_1 = \frac{\lambda \mu}{n - \mu}. \] (2.3)

The proof of this lemma for \(n = 1 \) is given by [4]. For any \(n \in \mathbb{N} \) we also can apply Jack’s lemma [3].

Lemma 2.2. If \(0 < \mu < 1, \ 0 < \lambda \leq 1 \) and \(Q \in H \) satisfying
\[Q(z) < 1 + \frac{\lambda \mu}{n - \mu} z, \quad Q(0) = 1, \quad n \in \mathbb{N}, \] (2.4)
and if \(p \in H, \ p(0) = 1 \) and satisfies
\[Q(z) p^n(z) < 1 + \lambda z, \] (2.5)
where
\[0 < \lambda \leq \frac{(n - \mu) \sin(\pi \alpha/2)}{[\mu + (n - \mu) e^{i \pi \alpha/2}]} \] (2.6)
then \(\text{Re}\{p(z)\} > 0 \) in \(U \).

Proof. If in Lemma 1.1 we put \(\lambda_1 = \lambda \mu / (n - \mu) \), then the condition (1.6) is equivalent to
\[\sin^{-1} \lambda + \sin^{-1} \frac{\lambda \mu}{n - \mu} \leq \frac{\alpha \pi}{2}. \] (2.7)

This inequality is equivalent to
\[\sin^{-1} \left(\sqrt{\frac{\lambda^2 \mu^2}{(n - \mu)^2} + \frac{\lambda \mu}{n - \mu} \sqrt{1 - \lambda^2}} \right) \leq \frac{\alpha \pi}{2}, \] (2.8)
or to the inequality
\[
\lambda \left[\sqrt{(n-\mu)^2 - \lambda^2 \mu^2} + \mu \sqrt{1-\lambda^2} \right] \leq (n-\mu) \sin \left(\frac{\alpha \pi}{2} \right). \tag{2.9}
\]

From there, after some transformations, we get the following equivalent inequality
\[
\left\{ \left[\mu^2 + (n-\mu)^2 \right]^2 - 4\mu^2 (n-\mu)^2 \cos^2 \left(\frac{\alpha \pi}{2} \right) \right\} \lambda^4
- 2(n-\mu)^2 \left[\mu^2 + (n-\mu)^2 \right] \sin^2 \left(\frac{\alpha \pi}{2} \right) \lambda^2 + (1-\mu)^4 \sin^4 \left(\frac{\alpha \pi}{2} \right) \geq 0
\tag{2.10}
\]
which is equivalent to the condition (2.6).

By Lemma 1.1 we have that $\text{Re}\{p(z)\} > 0$ in U.

Theorem 2.3. Let $f \in A_n$, $0 < \mu < 1$ and f satisfy the subordination
\[
f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} < 1 + \lambda z, \tag{2.11}
\]
where
\[
0 < \lambda \leq \frac{n-\mu}{\sqrt{\mu^2 + (n-\mu)^2}}. \tag{2.12}
\]
Then $f \in S^*$.

Proof. If we put $Q(z) = (z/f(z))^\mu = 1 + q_n z^n + \cdots$, then after some calculations, we get
\[
Q(z) - \frac{1}{\mu} z Q'(z) = f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} < 1 + \lambda z. \tag{2.13}
\]
From Lemma 2.1 we have
\[
Q(z) < 1 + \lambda_1 z, \quad \lambda_1 = \frac{\lambda \mu}{n-\mu}. \tag{2.14}
\]
The rest part of the proof is the same as in the case $n = 1$ (see [4, Theorem 1]) and we omit the details.

Theorem 2.4. Let $0 < \mu < 1$ and $0 < \alpha \leq 1$. If $f \in A_n$ satisfies
\[
\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \frac{(n-\mu) \sin(\pi \alpha/2)}{\mu + (n-\mu)e^{i\pi \alpha/2}}, \quad z \in U, \tag{2.15}
\]
then $f \in S(\alpha)$.

Proof. If we put $\lambda = (n-\mu) \sin(\pi \alpha/2)/\mu + (n-\mu)e^{i\pi \alpha/2}$, then, since $0 < \alpha \leq 1$, we have $0 < \lambda \leq (n-\mu)/\sqrt{\mu^2 + (n-\mu)^2}$, and by Theorem 2.3, $f \in S^*$. Later, the function $Q(z) = (z/f(z))^\mu = 1 + q_n z^n + \cdots$ is analytic in U and satisfies $Q(z) < 1 + \lambda_1 z$, $\lambda_1 = \lambda \mu/(n-\mu)$. Now, if we define
\[
p(z) = \left(\frac{zf'(z)}{f(z)} \right)^{1/\alpha}, \tag{2.16}
\]
then p is analytic in U, $p(0) = 1$ and condition (2.15) is equivalent to

$$Q(z)p^\alpha(z) < 1 + \lambda z.$$

(2.17)

Finally, from Lemma 2.2 we obtain

$$\left(\frac{zf'(z)}{f(z)}\right)^{\frac{1}{\alpha}} < \frac{1 + z}{1 - z} \iff \frac{zf'(z)}{f(z)} < \left(\frac{1 + z}{1 - z}\right)^\alpha,$$

(2.18)

that is, $f \in S(\alpha)$.

We note that for $\alpha = 1$ we have the statement of Theorem 2.3.

For $n = 1$, $\mu = 1/2$, $\alpha = 2/3$ we get the following corollary.

Corollary 2.5. Let $f \in A$ and let

$$\left| f'(z) \left(\frac{z}{f(z)}\right)^{\frac{3}{2}} - 1 \right| < \frac{1}{2}, \quad z \in U.$$

(2.19)

Then

$$\left| \arg \left(\frac{zf'(z)}{f(z)}\right) \right| < \frac{\pi}{3}, \quad z \in U,$$

(2.20)

that is, $f \in S(2/3)$.

Theorem 2.6. Let $0 < \mu < 1$, $\text{Re}\{c\} > -\mu$, and $0 < \alpha \leq 1$. If $f \in A_n$ satisfies

$$\left| f'(z) \left(\frac{z}{f(z)}\right)^{1 + \mu} - 1 \right| < \left| \frac{n + c - \mu}{c - \mu} \right| \frac{(n - \mu) \sin(\pi \alpha/2)}{|\mu + (n - \mu) e^{i \pi \alpha/2}|}, \quad z \in U,$$

(2.21)

then the function

$$F(z) = z \left[\frac{c - \mu}{z - \mu} \int_0^z \left(\frac{t}{f(t)}\right)^\mu t^{c-\mu-1} dt \right]^{-1/\mu}$$

(2.22)

belongs to $S(\alpha)$.

Proof. If we put that λ is equal to the right-hand side of the inequality (2.21) and

$$Q(z) = F'(z) \left(\frac{z}{F(z)}\right)^{1 + \mu} (= 1 + q_nz^n + \cdots),$$

(2.23)

then from (2.21) and (2.22) we obtain

$$Q(z) + \frac{1}{c - \mu} zQ'(z) = f'(z) \left(\frac{z}{f(z)}\right)^{1 + \mu} < 1 + \lambda z.$$

(2.24)

Hence, by using the result of Hallenbeck and Ruscheweyh [2, Theorem 1] we have that

$$Q(z) < 1 + \lambda_1 z, \quad \lambda_1 = \frac{|(c - \mu)| \Lambda}{|n + c - \mu|} = \frac{(n - \mu) \sin(\pi \alpha/2)}{|\mu + (n - \mu) e^{i \pi \alpha/2}|},$$

(2.25)

and the desired result easily follows from Theorem 2.4.
Remark 2.7. For $\alpha = 1$ and $n = 1$ we have the corresponding result given earlier in [4]. For $c = \mu + 1$, we have

Corollary 2.8. Let $0 < \mu < 1$ and $0 < \alpha \leq 1$. If $f \in A_n$ satisfies the condition

\[
\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \frac{n(n-\mu) \sin(\pi \alpha/2)}{\mu + (n-\mu) e^{\pi \alpha/2}}, \quad z \in U,
\]

then the function

\[
F(z) = z \left[\frac{1}{z} \int_0^z \left(\frac{t}{f(t)} \right)^\mu dt \right]^{-1/\mu}
\]

belongs to $S(\alpha)$.

Acknowledgement. The work of the first author was supported by Grant No. 04M03 of MNTRS through Math. Institute SANU.

References

Milutin Obradović: DEPARTMENT OF MATHEMATICS, FACULTY OF TECHNOLOGY AND METALLURGY, 4 KARNEGJOVA STREET, 11000 BELGRADE, YUGOSLAVIA

E-mail address: obrad@clab.tmf.bg.ac.yu

Shigeyoshi Owa: DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-OsAKA, OsAKA 577-8502, JAPAN

E-mail address: owa@math.kindai.ac.jp
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com