ON THE CLOSURE OF THE SUM OF CLOSED SUBSPACES

IRWIN E. SCOCHETMAN, ROBERT L. SMITH, and SZE-KAI TSUI

(Received 30 May 2000)

Abstract. We give necessary and sufficient conditions for the sum of closed subspaces of a Hilbert space to be closed. Specifically, we show that the sum will be closed if and only if the angle between the subspaces is not zero, or if and only if the projection of either space into the orthogonal complement of the other is closed. We also give sufficient conditions for the sum to be closed in terms of the relevant orthogonal projections. As a consequence, we obtain sufficient conditions for the existence of an optimal solution to an abstract quadratic programming problem in terms of the kernels of the cost and constraint operators.

2000 Mathematics Subject Classification. 46C05, 90C20.

1. Introduction. In this research/expository article, we suppose H is an arbitrary Hilbert space (real or complex) with K and N closed subspaces of H. We consider the question of when the (ordinary) sum $K + N$ is closed in H. It is obviously true if either $K \subseteq N$ or $N \subseteq K$. It is also true if either K or N is finite-dimensional. If K or N is of codimension 1 (i.e., one of the subspaces is a hyperplane through the origin), then $K + N$ is clearly closed. However, it is not closed in general (see Example 2.2).

In what follows, we will give necessary and sufficient conditions for $K + N$ to be closed. Although we have found no such conditions in the published literature, conditions were evidently provided without proof in unpublished course notes of Carl Pearcy [3]. In this paper, we state and prove a collection of similar necessary and sufficient conditions in Theorem 2.1. Our first equivalent condition involves orthogonal complements and projections. Let $L = K^\perp$ denote the orthogonal complement of K in H, and let $M = N^\perp$ denote the orthogonal complement of N in H. Also, let $E_L : H \rightarrow L$ be the corresponding orthogonal projection onto L and $E_M : H \rightarrow M$ be the corresponding orthogonal projection onto M. In Section 2, we see that $E_L(N)$ is closed if and only if $E_M(K)$ is closed, and more important for our purposes, that $K + N$ is closed if and only if each of these subspaces is closed (see Theorem 2.1(ii)). Thus, the closure of $N + K$ is equivalent to the closure of the orthogonal projection of N into L (resp., K into M). Our next equivalent condition involves the (cosine of the) angle $\theta(K,N)$ between K and N. Its definition is given in Section 2, where we also see that $K + N$ is closed if and only if $\theta(K,N) < 1$, that is, the angle between K and N is not equal to 0 (see Theorem 2.1(iii)). Finally, in Section 2 we give some sufficient conditions for Theorem 2.1 to hold in terms of the orthogonal projections $E_K : H \rightarrow K$ and $E_N : H \rightarrow N$ (see Theorem 2.3).

In Section 3, we give an application of our main results. This involves an abstract positive semidefinite quadratic programming problem given by minimizing the
quadic objective function $\langle x, Qx \rangle$ subject to the linear equality constraint $Ax = b$, for $x \in H$, where Q and A are bounded linear operators, and Q is also self-adjoint and positive semidefinite. For such a problem, we let K denote the kernel of Q, N the kernel of A and F the feasible region, where $F = N + x$, for any $x \in F$. Then it is known that this problem admits an optimal solution if the (positive-definite) restriction of Q to $L = K^\perp$ is strictly positive definite (i.e., coercive) and the projection $E_L(F)$ of F into L is closed [5]. The restriction $Q|L$ is well known to be strictly positive definite if and only if its (positive) spectrum is bounded away from zero. That leaves the question of when the projection $E_L(F)$ is closed. Our main results give equivalent conditions for this to happen. In particular, it happens precisely when $K + N$ is closed, or if $\theta(K,N) < 1$.

2. Main results. We begin this section by defining the quantity $\theta(K,N)$, which is essentially the angle between the subspaces K and N. Let

$$S(K,N) = \{ (x,y) : x \in K \cap (K \cap N)^\perp, y \in N \cap (K \cap N)^\perp, \|x\| = \|y\| = 1 \}. \quad (2.1)$$

Note that $S(K,N) = S(N,K)$ and $S(K,N) = \emptyset$ if and only if either $N \subseteq K$ or $K \subseteq N$. Let

$$\theta(K,N) = \begin{cases} \sup \{ |\langle x,y \rangle| : (x,y) \in S(K,N) \}, & \text{for } S(K,N) \neq \emptyset, \\ -\infty, & \text{for } S(K,N) = \emptyset, \end{cases} \quad (2.2)$$

so that $-\infty \leq \theta(K,N) = \theta(N,K) \leq 1$. In particular, if $N \cap K = \{0\}$, then $(K \cap N)^\perp = H$, $N = N \cap (K \cap N)^\perp$, $K = K \cap (K \cap N)^\perp$, and

$$\theta(K,N) = \sup \{ |\langle x,y \rangle| : x \in N, y \in K, \|x\| = \|y\| = 1 \}. \quad (2.3)$$

If $L = K^\perp$ and $M = N^\perp$ are hyperplanes through the origin, then $\theta(K,N)$ is the (cosine of the) conventional angle between the one-dimensional subspaces K and N.

Theorem 2.1. The following statements are equivalent:

(i) $E_L(N)$ is closed in L.

(ii) $K + N$ is closed in H.

(iii) $\theta(K,N) < 1$.

(iv) $E_M(K)$ is closed in M.

Proof. Given the expository nature of this paper, we find it instructive to show all the implications involved.

(i)\Leftrightarrow(ii). Suppose $E_L(N)$ is closed. Let $x^k = v^k + \eta^k$, where $v^k \in N$ and $\eta^k \in K$, for all $k = 1,2,\ldots$, and $x^k \to x \in H$. To show that $x \in N + K$. Since $L = K^\perp$, we have that

$$E_L(x^k) \to E_L(x) \in L, \quad (2.4)$$

where

$$E_L(x^k) = E_L(v^k + \eta^k) = E_L(v^k) + E_L(\eta^k) = E_L(v^k) \in E_L(N), \quad \forall k = 1,2,\ldots. \quad (2.5)$$

By hypothesis, $E_L(x) \in E_L(N)$. Thus, there exists $y \in N$ such that $E_L(x) = E_L(y)$, that is, $E_L(x - y) = 0$, so that $\eta = x - y \in K = L^\perp$. Therefore, $x = y + \eta$, that is, $x \in N + K$.

ON THE CLOSURE OF THE SUM OF CLOSED SUBSPACES

Now suppose $N + K$ is closed in H. Let $\{\xi^k\}$ be a sequence in $E_L(N)$ which converges to $\xi \in L$. To show that $\xi \in E_L(N)$, for each k, there exists $y^k \in N$ such that $E_L(y^k) = \xi^k$. Let $\eta^k = \xi^k - y^k$, for all k. Then

$$E_L(\eta^k) = E_L(\xi^k) - E_L(y^k) = E_L(E_L(y^k)) - E_L(y^k) = E_L(y^k) - E_L(\eta^k) = 0,$$

so that $\eta^k \in K$, for all $k = 1, 2, \ldots$. Since $\xi^k = y^k + \eta^k \in N + K$, for all K, and $\xi^k \to \xi$, it follows, by hypothesis, that $\xi \in N + K$. Hence, there exist $\nu \in N$ and $\eta \in K$ for which $\xi = \nu + \eta$. Therefore,

$$E_L(E_L(y^k)) = E_L(\xi^k) \to E_L(\xi) = E_L(\nu) + E_L(\eta) = E_L(\nu),$$
 $$E_L(E_L(y^k)) = E_L(\xi^k) \to E_L(\xi),$$

so that $\xi = E_L(\nu)$, for $\nu \in N$, that is, $\xi \in E_L(N)$.

(ii)\iff(iii). First observe that if $N \subseteq K$ or $K \subseteq N$, then $N + K$ is closed in H and $\partial(N,K) = -\infty$. Thus, we may assume that $N \nsubseteq K$ and $K \nsubseteq N$.

Next we show that, without loss of generality, we may also assume that $N \cap K = \{0\}$. If not, then we may write

$$N = N_1 \oplus (N \cap K), \quad K = K_1 \oplus (N \cap K),$$

where N_1 (resp., K_1) is the orthogonal complement of $N \cap K$ in N (resp., K). Then

$$N + K = (N_1 \oplus (N \cap K)) + (K_1 \oplus (N \cap K))$$
$$= (N_1 + K_1) \oplus ((N \cap K) + (N \cap K))$$
$$= (N_1 + K_1) \oplus (N \cap K).$$

Thus, $N + K$ is closed if and only if $N_1 + K_1$ is closed, where $N_1 \cap K_1 = \{0\}$.

Suppose $N + K$ is closed with $N \cap K = \{0\}$. Consider the canonical Hilbert space mapping

$$f : N \oplus K \to N + K,$$

given by

$$f(\nu, \eta) = \nu + \eta, \quad \forall \nu \in N, \ \forall \eta \in K.$$

This mapping is clearly linear and onto. It is also one-to-one since $N \cap K = \{0\}$. We next show that it is also bounded.

Let $\nu \in N$ and $\eta \in K$, then

$$\|f(\nu, \eta)\|^2 = \|\nu + \eta\|^2 = \langle \nu + \eta, \nu + \eta \rangle = \langle \nu, \nu \rangle + \langle \nu, \eta \rangle + \langle \eta, \nu \rangle + \langle \eta, \eta \rangle$$
$$= \langle \nu, \nu \rangle + 2\langle \nu, \eta \rangle + \langle \eta, \eta \rangle = \|\nu\|^2 + 2\langle \nu, \eta \rangle + \|\eta\|^2$$
$$\leq \|\nu\|^2 + 2\|\nu\|\|\eta\| + \|\eta\|^2 \leq \|\nu\|^2 + 2\|\nu\|\|\eta\| + \|\eta\|^2.$$

Moreover,

$$2\|\nu\|\|\eta\| \leq \|\nu\|^2 + \|\eta\|^2.$$

Hence,

$$\|f(\nu, \eta)\|^2 \leq 2(\|\nu\|^2 + \|\eta\|^2) = 2\|\nu\|\|\eta\|^2,$$

so that $\|f\| \leq \sqrt{2}$, that is, f is bounded.
By the open mapping theorem [2, page 57], \(f \) has a bounded linear inverse, that is, there exists \(c > 0 \) such that
\[
c \| (\nu, \eta) \| \leq \| f(\nu, \eta) \| = \| \nu + \eta \| \leq \sqrt{2} \| (\nu, \eta) \|. \tag{2.15}
\]
Consequently,
\[
c^2 (\| \nu \|^2 + \| \eta \|^2) = c^2 \| (\nu, \eta) \|^2 \leq \| \nu + \eta \|^2 = \| \nu \|^2 + 2 \langle \nu, \eta \rangle + \| \eta \|^2.
\tag{2.16}
\]
Hence,
\[
c^2 (\| \nu \|^2 + \| \eta \|^2) \leq \| \nu \|^2 + 2 \langle \nu, \eta \rangle + \| \eta \|^2,
\tag{2.17}
\]
that is,
\[
(c^2 - 1)(\| \nu \|^2 + \| \eta \|^2) \leq 2 \langle \nu, \eta \rangle,
\tag{2.18}
\]
for all such \(\nu, \eta \).

Now assume in addition that \(\| \nu \| = \| \eta \| = 1 \). Then
\[
2(c^2 - 1) = (c^2 - 1)(\| \nu \|^2 + \| \eta \|^2) \leq 2 \langle \nu, \eta \rangle,
\tag{2.19}
\]
that is,
\[
1 - c^2 \geq -\langle -\nu, \eta \rangle,
\tag{2.20}
\]
where \(-\nu\) is an arbitrary element of \(N \) of norm 1, since \(\nu \) is such. If \(\langle \nu, \eta \rangle \leq 0 \), then
\[
\langle -\nu, \eta \rangle = |\langle \nu, \eta \rangle|, \text{ so that } 1 - c^2 \geq \langle \nu, \eta \rangle, \text{ and } 0 < c \leq 1.
\]
If \(\langle \nu, \eta \rangle \geq 0 \), then \(\langle \nu, \eta \rangle = |\langle \nu, \eta \rangle| \), so that \(1 - c^2 \geq -|\langle \nu, \eta \rangle| \). Letting \(\nu' = -\nu \), we get
\[
1 - c^2 \geq -\langle \nu', \eta \rangle = \langle \nu, \eta \rangle = |\langle \nu, \eta \rangle|.
\tag{2.21}
\]
Hence, in either case,
\[
|\langle \nu, \eta \rangle| \leq 1 - c^2 < 1,
\tag{2.22}
\]
for all \(\nu \in N, \eta \in K \) with \(\| \nu \| = \| \eta \| = 1 \). Thus, \(\theta(N, K) < 1 \).

Now suppose \(-\infty \leq \theta = \theta(N, K) < 1 \). Observe that \(N, K \) are weakly closed in \(H \), as well as closed. Also, from the definition of \(\theta \) we have that
\[
|\langle \nu, \eta \rangle| \leq \theta \| \nu \| \| \eta \|, \tag{2.23}
\]
so that
\[
-2\theta \| \nu \| \| \eta \| \leq 2\langle \nu, \eta \rangle \leq 2\theta \| \nu \| \| \eta \|, \quad \forall \nu \in N, \forall \eta \in K. \tag{2.24}
\]

Suppose \(\{ \nu^k \} \) is a sequence in \(N \) and \(\{ \eta^k \} \) is a sequence in \(K \) such that \(x^k = \nu^k + \eta^k \rightarrow x \) in \(H \). To show that \(x \in N + K \). First, we show that
\[
\sup_k \| \nu^k \| < \infty, \quad \sup_k \| \eta^k \| < \infty. \tag{2.25}
\]
We have
\[
\| x^k \|^2 = \| \nu^k + \eta^k \|^2 = \| \nu^k \|^2 + \| \eta^k \|^2 + 2 \langle \nu^k, \eta^k \rangle
\geq \| \nu^k \|^2 + \| \eta^k \|^2 - 2\theta \| \nu^k \| \| \eta^k \|
= (\theta \| \nu^k \| - \| \eta^k \|)^2 + (1 - \theta^2)\| \nu^k \|^2, \tag{2.26}
\]

that is,

$$
\|v^k + \eta^k\|^2 \geq (\theta \|v^k\| - \|\eta^k\|)^2 + (1 - \theta^2)\|v^k\|^2.
$$

(2.27)

Interchanging v^k and η^k, we also obtain

$$
\|v^k + \eta^k\|^2 \geq (\theta \|\eta^k\| - \|v^k\|)^2 + (1 - \theta^2)\|\eta^k\|^2,
$$

(2.28)

where $1 - \theta^2 > 0$ by hypothesis. We see from these inequalities that if either $\{v^k\}$ or $\{\eta^k\}$ is unbounded, we obtain a contradiction, since the convergent sequence $\{v^k + \eta^k\}$ must be bounded.

By the Banach-Alaoglu theorem [2], passing to subsequences if necessary, we may assume that there exists $\nu \in N$ and $\eta \in K$ such that $v^k \rightharpoonup \nu$ and $\eta^k \rightharpoonup \eta$ (weak convergence), as $k \to \infty$. Thus, $v^k + \eta^k \rightharpoonup \nu + \eta$ and $v^k + \eta^k \to x$, as $k \to \infty$. Necessarily, $x = \nu + \eta \in N + K$, since the weak topology on H separates points.

(iii) \Rightarrow (iv). Interchange K and N in (i), (ii), and (iii).

Example 2.2. For each $j = 1, 2, \ldots$, let $\psi_j = \arcsin(1/j)$ so that $\cos \psi_j = \sqrt{j^2 - 1/j}$.

Define

$$
H = \left\{ [y_i, u_i]_{i=1}^\infty : y_i, u_i \in \mathbb{R}, \sum_{i=1}^\infty (y_i^2 + u_i^2) < \infty \right\},
$$

$$
K = \left\{ [y_i, 0]_{i=1}^\infty : y_i \in \mathbb{R}, \sum_{i=1}^\infty y_i^2 < \infty \right\},
$$

$$
N = \left\{ [y_i, u_i]_{i=1}^\infty \in H : y_i = u_i \cot \psi_i, \forall i \right\}.
$$

Clearly, K and N are closed subspaces of the real Hilbert space H with $K \cap N = \{0\}$ and

$$
L = K^\perp = \left\{ [0, u_i]_{i=1}^\infty : u_i \in \mathbb{R}, \sum_{i=1}^\infty u_i^2 < \infty \right\}.
$$

Now, for each $j = 1, 2, \ldots$, define $x^j = (x^j_i)_{i=1}^\infty$ by

$$
x^j_i = \begin{cases} [0,0], & \text{for } i \neq j, \\ [1,0], & \text{for } i = j, \end{cases}
$$

(2.31)

so that $x^j \in K$ and $\|x^j\| = 1$. Similarly, define $\nu^j = (\nu^j_i)_{i=1}^\infty$ by

$$
\nu^j_i = \begin{cases} [0,0], & \text{for } i \neq j, \\ [\cos \psi_j, \sin \psi_j], & \text{for } i = j, \end{cases}
$$

(2.32)

so that $\nu^j \in N$ and $\|\nu^j\| = 1$. Note that

$$
\nu^j_i = [\cos \psi_j, \sin \psi_j] = [\sin \psi_j, -\cos \psi_j](1,0), \quad \forall j.
$$

(2.33)

We then have

$$
|\langle x^j, \nu^j \rangle| = \left| \sum_{i=1}^\infty \langle x^j_i, \nu^j_i \rangle \right| = |\langle [1,0], [\cos \psi_j, \sin \psi_j] \rangle| = \cos \psi_j, \quad \forall j = 1, 2, \ldots
$$

(2.34)
Consequently, we see that
\[\theta(N, K) \geq \sup_j \cos \psi_j = 1, \]
that is, \(\theta(N, K) = 1 \), so that \(E_L(N) \) is not closed by Theorem 2.1.

We next show that \(E_L(N) \) is not closed. Suppose it is. Observe that \(E_L(N) \) is the set of \((\{0 \ u_j\})_{j=1}^{\infty} \in L \) for which there exists \(y_j \in \mathbb{R} \) such that \(y_j = u_j \cot \psi_j \), \(\forall j \), and \((y_j)\) is square summable. For each \(j = 1, 2, \ldots \), let \(u_j = 1/j \), so that \(u = (\{0 \ u_j\}) \in L \). Set \(y_j = u_j \cot \psi_j \), and define
\[x_j^i = \begin{cases} [y_i \ u_i], & \text{for } i \leq j, \\ [0 \ 0], & \text{for } i > j, \end{cases} \]
so that \(x_j^i \in N \), and \(u_j = E_L(x_j^i) \in E_L(N) \), where
\[u_j^i = \begin{cases} [0 \ u_i], & \text{for } i \leq j, \\ [0 \ 0], & \text{for } i > j, \end{cases} \]
for all \(j = 1, 2, \ldots \). Clearly, \(\{u_j^i\} \) is a Cauchy sequence in \(E_L(N) \). Since \(E_L(N) \) is closed, then there exists \(u \in E_L(N) \) such that \(u_j^i \to u \), as \(j \to \infty \). Therefore, there exists \(y = (y_j) \) such that \(y_j = u_j \cot \psi_j \), for all \(j \), and \(\sum y_j^2 < \infty \), that is, \((\{y_j \ u_j\}) \in H \). But
\[\|(\{y_j \ u_j\})\|^2 = \sum_{j=1}^{\infty} (y_j^2 + u_j^2) = \sum_{j=1}^{\infty} (\cot^2 \psi_j + 1)u_j^2 = \sum_{j=1}^{\infty} \frac{u_j^2}{\sin^2 \psi_j} = \infty. \]
This is a contradiction. Hence, \(E_L(N) \) is not closed in this example.

We next show that \(N + K \) is not closed. Let \([y_i, u_i] \) be an arbitrary element of \(N \), so that \(\sum_{i=1}^{\infty} u_i^2 \leq \infty \), in particular. Once again let
\[x_j^i = \begin{cases} [y_i \ u_i], & \text{for } i \leq j, \\ [0 \ 0], & \text{for } i > j, \end{cases} \]
so that \(x_j^i \in N \), and
\[z_j = \begin{cases} [y_i \ 0], & \text{for } i \leq j, \\ [0 \ 0], & \text{for } i > j, \end{cases} \]
so that \(-z_j \in K \), for all \(j \). Consequently, \(u_j \in N + K \), for all \(j \), where
\[u_j = \begin{cases} [0 \ u_i], & \text{for } i \leq j, \\ [0 \ 0], & \text{for } i > j. \end{cases} \]
It follows that the sequence \(\{u_j\} \) is Cauchy since \(\sum_{j=1}^{\infty} u_j^2 < \infty \). By hypothesis, there exists \(u \in H \) such that \(u_j \to u \) as \(j \to \infty \). Necessarily, \(u_j^i \to u_i \), for all \(i \). Hence,
\[u = ([0, u_1], [0, u_2], \ldots). \]
If \(u \in K + N \), then there exists \(z = ([z_1, 0], [z_2, 0], \ldots) \in K \) and \(x \in N \) such that \(z + x = u \). Thus,
\[
x = u - z = -([z_1, u_1], [z_2, u_2], \ldots).
\]
Since this belongs to \(N \), we must have
\[
z_i = u_i \cot \psi_i, \quad \forall i.
\]
Consequently,
\[
\|x\|^2 = \sum_{j=1}^{\infty} (\cot \psi_i^2 + 1) u_i = \infty,
\]
which is a contradiction. Therefore, \(K + N \) is not closed.

Theorem 2.3. The following are sufficient for \(K + N \) to be closed:

(i) \(E_N E_K = 0 \) or \(E_K E_N = 0 \).
(ii) \(E_N E_K - E_K E_N = 0 \).
(iii) \(\sup \{\|E_N \eta\| : \eta \in K \cap (N \cap K)^\perp, \|\eta\| = 1\} < 1 \).
(iii) \(\sup \{\|E_K \nu\| : \nu \in N \cap (N \cap K)^\perp, \|\nu\| = 1\} < 1 \).

Proof. (i) If \(E_N E_K = 0 \), then
\[
E_K E_N = (E_N E_K)^* = E_K^* E_N^* = 0,
\]
so that \(L + M = L \oplus M \), and is therefore closed in \(H \). Similarly for \(E_K E_N = 0 \).

(ii) We have
\[
E_N E_K = E_K E_N = E_{N \cap K},
\]
(where, in general, \(E_X \) denotes the orthogonal projection of \(H \) onto the closed subspace \(X \)) and
\[
N + K = (N \cap K) \oplus (N \cap (N \cap K)^\perp + K \cap (N \cap K)^\perp).
\]
We also have
\[
E_N (I - E_N E_K) = E_{N \cap (N \cap K)^\perp},
\]
where \(I \) is the identity operator on \(H \) and
\[
I - E_N E_K = E_{(N \cap K)^\perp}.
\]
Thus, by hypothesis,
\[
E_N (I - E_N E_K) = E_N - E_N^2 E_K = E_N - E_N E_K E_N = (I - E_N E_K) E_N.
\]
Similarly,
\[
E_K (I - E_K E_N) = E_K \cap (N \cap K)^\perp.
\]
But
\[
E_N (I - E_N E_K) (I - E_N E_K) E_K = 2 (E_N E_K - E_K E_N) = 0,
\]
by hypothesis. (Note that part (i) is valid for any closed subspace \(N \) and \(K \) and their corresponding projections \(E_N \) and \(E_K \).) Hence, by (i) applied to \(E_N \) and \(E_{(N \cap K)^\perp} \), we obtain that
\[
(N \cap (N \cap K)^\perp) + (K \cap (N \cap K)^\perp)
\]
is closed in \(H \). Consequently, \(N + K \) is closed in \(H \).
(iii) For convenience, let
\[\beta = \sup \{ \| EN\eta \| : \eta \in K \cap (N \cap K)^\perp, \| \eta \| = 1 \}. \] (2.55)
(We may exclude the case where the defining set is empty. This happens only if \(K \subseteq N \), in which case \(K + N \) is trivially closed.) Then \(\beta < 1 \) and \(\beta^2 < 1 \), that is, \(\delta = 1 - \beta^2 > 0 \). Fix
\[\eta \in K \cap (N \cap K)^\perp, \quad \nu \in N \cap (N \cap K)^\perp, \] (2.56)
such that \(\| \eta \| = \| \nu \| = 1 \). Then
\[|\langle \eta, \nu \rangle| = \| \eta \| \| \nu \| \cos \psi, \] (2.57)
where \(\psi \) is the angle between \(\eta \) and \(\nu \), if this angle is at most \(\pi/2 \), or the supplement of this angle, if it is greater than \(\pi/2 \). (Alternately, we can replace \(\eta \) by \(-\eta \) where necessary.) Thus, \(0 \leq \psi \leq \pi/2 \). By the law of cosines, we have
\[\| \eta + \nu \|^2 = \| \eta \|^2 + \| \nu \|^2 - 2 \| \eta \| \| \nu \| \cos \psi = 2 - 2 \cos \psi. \] (2.58)
On the other hand, since \(\nu \in N \), and \(EN\eta \) is the best approximation in \(N \) to \(\eta \), we have that
\[\| \eta - \nu \|^2 \geq \| \eta - EN\eta \|^2 = \| \eta \|^2 - \| EN\eta \|^2 = 1 - \| EN\eta \|^2, \] (2.59)
by the Pythagorean identity, where \(\eta - EN\eta \) is orthogonal to \(EN\eta \). Thus,
\[1 - \| EN\eta \|^2 \leq 2 - 2 \cos \psi. \] (2.60)
However, by definition of \(\beta \), we have
\[\| EN\eta \|^2 \leq \beta^2, \] (2.61)
so that
\[1 - \| EN\eta \|^2 \geq 1 - \beta^2 = \delta > 0. \] (2.62)
Consequently,
\[0 < \delta \leq 2 - 2 \cos \psi, \] (2.63)
that is,
\[0 \leq \cos \psi \leq 1 - \frac{\delta}{2} < 1, \] (2.64)
so that
\[|\langle \eta, \nu \rangle| \leq 1 - \frac{\delta}{2} < 1. \] (2.65)
This completes the proof of (iii), since \(\eta \) and \(\nu \) are arbitrary.

(iii) The proof in part (iii) depends only on the fact that \(N \) and \(K \) are closed subspaces of \(H \). Thus, simply interchange these spaces in the proof.
3. An application to quadratic programming. We consider the general infinite quadratic programming problem given by

$$\min \langle x, Qx \rangle$$ \hfill (3.1)

subject to

$$Ax = b, \quad x \in H,$$ \hfill (3.2)

where H and M are real Hilbert spaces, $b \in M$, the constraint operator $A : H \to M$ is a bounded linear operator and the cost operator $Q : H \to H$ is a nonzero, (selfadjoint) positive semidefinite, bounded linear operator. The feasible region

$$F = \{ x \in H : Ax = b \}$$ \hfill (3.3)

is a closed, affine subset of H (which we assume to be nonempty), and the kernel

$$N = \{ x \in H : Ax = 0 \}$$ \hfill (3.4)

of A in H is a closed subspace of H. Of course, $F = N + x$, for any $x \in F$.

Recall that Q is positive semidefinite if $\langle x, Qx \rangle \geq 0$, for all $x \in H$, and that Q is positive definite if $\langle x, Qx \rangle > 0$, for all $x \in H$, $x \neq 0$. We say that the operator Q is strictly positive definite if it is coercive, that is, if there exists $\sigma_Q > 0$ satisfying

$$\sigma_Q \| x \|^2 \leq \langle x, Qx \rangle, \quad \forall x \in H.$$ \hfill (3.5)

This condition is known (see [1, page 73]) to be necessary and sufficient for (3.1) to admit a (unique) optimal solution for any (nonempty) closed, convex subset F of H. Thus, even if F is a closed, convex set in H, and Q is only positive definite, problem (3.1) may not admit an optimal solution. See [4] for an example.

In this section, we establish sufficient conditions for (3.1) to admit an optimal solution.

Since Q is positive semidefinite, its kernel K is given by

$$K = \{ x \in H : \langle x, Qx \rangle = 0 \}. \hfill (3.6)$$

Moreover, since Q is selfadjoint, it follows that K and $L = K^\perp$ are invariant under Q. Hence, Q also decomposes into $0 \oplus P$, where 0 is the zero operator on K and $P : L \to L$ is the restriction operator $Q|L$. Note that P is a positive-definite, bounded linear operator on L. It need not be strictly positive definite.

Also, since $F \subseteq H$, we have that the image of F under E_K is

$$E_K(F) = \{ \eta \in K : \eta + \xi \in F, \text{ for some } \xi \in L \}. \hfill (3.7)$$

It is nonempty and convex in K, since this is the case for F in H. It is also true that F is closed in H; however, $E_K(F)$ need not be closed in K.

Analogously, the image of F under E_L is

$$E_L(F) = \{ \xi \in L : \eta + \xi \in F, \text{ for some } \eta \in K \}. \hfill (3.8)$$
As with $E_K(F)$, the set $E_L(F)$ is nonempty and convex, but not necessarily closed in L. Moreover, $F \subseteq E_K(F) \oplus E_L(F)$. The same is true of $N, E_K(N)$, and $E_L(N)$.

We may now consider the following related problem:

$$\min_{\xi \in E_L(F)} \langle \xi, P\xi \rangle,$$ \hspace{1cm} (3.9)

where, as we have seen, P is positive definite on L and $E_L(F)$ is a nonempty, convex subset of L, which may not be closed. Moreover,

$$\langle \xi, P\xi \rangle = \langle x, Qx \rangle,$$ \hspace{1cm} (3.10)

for all $\xi \in L$, $\eta \in K$, and $x = \eta + \xi$.

Note that solving (3.9) is equivalent to solving (3.1) in the following sense. If $\xi^* \in E_L(F)$ is an optimal solution to (3.9), then there exists $\eta^* \in E_K(F)$ such that $x^* = \eta^* + \xi^* \in F$ and x^* is optimal for (3.1). Conversely, if $x^* \in F$ is optimal for (3.1), then $x^* = \eta^* + \xi^*$, for $\eta^* \in E_K(F)$ and $\xi^* \in E_L(F)$, where ξ^* is optimal for (3.9).

We are interested in when the feasible region $E_L(F)$ for (3.9) is closed.

Lemma 3.1. The following statements are equivalent for F, K, and N:

(i) $E_L(F)$ or $E_L(N)$ is closed in L.

(ii) $E_M(K)$ is closed in M.

(iii) $N + K$ is closed in H.

(iv) $F + K$ is closed in H.

(v) $\theta(N, K) < 1$.

Proof. Apply Theorem 2.1 together with the fact that $F = N + x$, for any fixed $x \in F$. \Halmos

Theorem 3.2. If $Q|L$ is strictly positive definite and any one of the conditions in Lemma 3.1 holds, then (3.1) admits an optimal solution.

Proof. Observe that (3.9) admits an optimal solution if $P = Q|L$ is strictly positive definite and $E_L(F)$ is closed in L [1, page 73]. \Halmos

Acknowledgements. We wish to thank Peter Duren of the Department of Mathematics at the University of Michigan at Ann Arbor, and Stephan Richter of the Department of Mathematics at the University of Tennessee for bringing the information of [3] to our attention.

The second author was supported in part by the National Science Foundation under grant DMI-9713723.

References

Irwin E. Schochetman: Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
E-mail address: schochet@oakland.edu

Robert L. Smith: Industrial and Operations Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
E-mail address: rlsmith@umich.edu

Sze-Kai Tsui: Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
E-mail address: tsui@oakland.edu
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor
Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation
http://www.hindawi.com