ON FUZZY DOT SUBALGEBRAS OF BCH-ALGEBRAS

SUNG MIN HONG, YOUNG BAE JUN, SEON JEONG KIM, and GWANG IL KIM

(Received 21 December 2000)

ABSTRACT. We introduce the notion of fuzzy dot subalgebras in BCH-algebras, and study its various properties.

2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.

1. Introduction. In [4], Hu and Li introduced the notion of BCH-algebras which are a generalization of BCK/BCI-algebras. In 1965, Zadeh [6] introduced the concept of fuzzy subsets. Since then several researchers have applied this notion to various mathematical disciplines. Jun [5] applied it to BCH-algebras, and he considered the fuzzification of ideals and filters in BCH-algebras. In this paper, we introduce the notion of a fuzzy dot subalgebra of a BCH-algebra as a generalization of a fuzzy subalgebra of a BCH-algebra, and then we investigate several basic properties related to fuzzy dot subalgebras.

2. Preliminaries. A BCH-algebra is an algebra \((X, *, 0)\) of type \((2,0)\) satisfying the following conditions:

(i) \(x * x = 0\),

(ii) \(x * y = 0 = y * x\) implies \(x = y\),

(iii) \((x * y) * z = (x * z) * y\) for all \(x, y, z \in X\).

In any BCH-algebra \(X\), the following hold (see [2]):

(P1) \(x * 0 = x\),

(P2) \(x * 0 = 0\) implies \(x = 0\),

(P3) \(0 * (x * y) = (0 * x) * (0 * y)\).

A BCH-algebra \(X\) is said to be medial if \(x * (x * y) = y\) for all \(x, y \in X\). A nonempty subset \(S\) of a BCH-algebra \(X\) is called a subalgebra of \(X\) if \(x * y \in S\) whenever \(x, y \in S\). A map \(f\) from a BCH-algebra \(X\) to a BCH-algebra \(Y\) is called a homomorphism if \(f(x * y) = f(x) * f(y)\) for all \(x, y \in X\).

We now review some fuzzy logic concepts. A fuzzy subset of a set \(X\) is a function \(\mu: X \rightarrow [0,1]\). For any fuzzy subsets \(\mu\) and \(v\) of a set \(X\), we define

\[
\mu \leq v \iff \mu(x) \leq v(x) \quad \forall x \in X,
\]

\[
(\mu \cap v)(x) = \min \{\mu(x), v(x)\} \quad \forall x \in X.
\] (2.1)

Let \(f: X \rightarrow Y\) be a function from a set \(X\) to a set \(Y\) and let \(\mu\) be a fuzzy subset of \(X\).
The fuzzy subset ν of Y defined by
\[
\nu(y) := \begin{cases}
\sup_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) \neq \emptyset, \forall y \in Y, \\
0 & \text{otherwise,}
\end{cases}
\] (2.2)
is called the image of μ under f, denoted by $f[\mu]$. If ν is a fuzzy subset of Y, the fuzzy subset μ of X given by $\mu(x) = \nu(f(x))$ for all $x \in X$ is called the preimage of ν under f and is denoted by $f^{-1}[\nu]$.

A fuzzy relation μ on a set X is a fuzzy subset of $X \times X$, that is, a map $\mu : X \times X \to [0, 1]$. A fuzzy subset μ of a BCH-algebra X is called a fuzzy subalgebra of X if $\mu(x \ast y) \geq \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

3. Fuzzy product subalgebras.

In what follows let X denote a BCH-algebra unless otherwise specified.

Definition 3.1. A fuzzy subset μ of X is called a fuzzy dot subalgebra of X if $\mu(x \ast y) \geq \mu(x) \cdot \mu(y)$ for all $x, y \in X$.

Example 3.2. Consider a BCH-algebra $X = \{0, a, b, c\}$ having the following Cayley table (see [1]):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a fuzzy set μ in X by $\mu(0) = 0.5$, $\mu(a) = 0.6$, $\mu(b) = 0.4$, $\mu(c) = 0.3$. It is easy to verify that μ is a fuzzy dot subalgebra of X.

Note that every fuzzy subalgebra is a fuzzy dot subalgebra, but the converse is not true. In fact, the fuzzy dot subalgebra μ in Example 3.2 is not a fuzzy subalgebra since
\[
\mu(a \ast a) = \mu(0) = 0.5 < 0.6 = \mu(a) = \min\{\mu(a), \mu(a)\}. \quad (3.1)
\]

Proposition 3.3. If μ is a fuzzy dot subalgebra of X, then
\[
\mu(0) \geq (\mu(x))^2, \quad \mu(0^n \ast x) \geq (\mu(x))^{2n+1},
\] (3.2)
for all $x \in X$ and $n \in \mathbb{N}$ where $0^n \ast x = 0 \ast (0 \ast (\cdots (0 \ast x) \cdots))$ in which 0 occurs n times.

Proof. Since $x \ast x = 0$ for all $x \in X$, it follows that
\[
\mu(0) = \mu(x \ast x) \geq \mu(x) \cdot \mu(x) = (\mu(x))^2 \quad (3.3)
\]
for all $x \in X$. The proof of the second part is by induction on n. For $n = 1$, we have $\mu(0 \ast x) \geq \mu(0) \cdot \mu(x) \geq (\mu(x))^3$ for all $x \in X$. Assume that $\mu(0^k \ast x) \geq (\mu(x))^{2k+1}$ for
all \(x \in X \). Then

\[
\mu(0^{k+1} \ast x) = \mu(0 \ast (0^k \ast x)) \geq \mu(0) \cdot \mu(0^k \ast x) \\
\geq (\mu(x))^2 \cdot (\mu(x))^{2k+1} = (\mu(x))^{2(k+1)+1}.
\] (3.4)

Hence \(\mu(0^n \ast x) \geq (\mu(x))^{2n+1} \) for all \(x \in X \) and \(n \in \mathbb{N} \).

Proposition 3.4. Let \(\mu \) be a fuzzy dot subalgebra of \(X \). If there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} (\mu(x_n))^2 = 1 \), then \(\mu(0) = 1 \).

Proof. According to Proposition 3.3, \(\mu(0) \geq (\mu(x_n))^2 \) for each \(n \in \mathbb{N} \). Since \(1 \geq \mu(0) \geq \lim_{n \to \infty} (\mu(x_n))^2 = 1 \), it follows that \(\mu(0) = 1 \).

Theorem 3.5. If \(\mu \) and \(\nu \) are fuzzy dot subalgebras of \(X \), then so is \(\mu \cap \nu \).

Proof. Let \(x, y \in X \), then

\[
(\mu \cap \nu)(x \ast y) = \min \{\mu(x \ast y), \nu(x \ast y)\} \\
\geq \min \{\mu(x) \cdot \mu(y), \nu(x) \cdot \nu(y)\} \\
\geq (\min \{\mu(x), \nu(x)\}) \cdot (\min \{\mu(y), \nu(y)\}) \\
= ((\mu \cap \nu)(x)) \cdot ((\mu \cap \nu)(y)).
\] (3.5)

Hence \(\mu \cap \nu \) is a fuzzy dot subalgebra of \(X \).

Note that a fuzzy subset \(\mu \) of \(X \) is a fuzzy subalgebra of \(X \) if and only if a nonempty level subset

\[
U(\mu; t) := \{ x \in X \mid \mu(x) \geq t \}
\] (3.6)

is a subalgebra of \(X \) for every \(t \in [0, 1] \). But, we know that if \(\mu \) is a fuzzy dot subalgebra of \(X \), then there exists \(t \in [0, 1] \) such that

\[
U(\mu; t) := \{ x \in X \mid \mu(x) \geq t \}
\] (3.7)

is not a subalgebra of \(X \). In fact, if \(\mu \) is the fuzzy dot subalgebra of \(X \) in Example 3.2, then

\[
U(\mu; 0.4) = \{ x \in X \mid \mu(x) \geq 0.4 \} = \{0, a, b\}
\] (3.8)

is not a subalgebra of \(X \) since \(b \ast a = c \notin U(\mu; 0.4) \).

Theorem 3.6. If \(\mu \) is a fuzzy dot subalgebra of \(X \), then

\[
U(\mu; 1) := \{ x \in X \mid \mu(x) = 1 \}
\] (3.9)

is either empty or is a subalgebra of \(X \).

Proof. If \(x \) and \(y \) belong to \(U(\mu; 1) \), then \(\mu(x \ast y) \geq \mu(x) \cdot \mu(y) = 1 \). Hence \(\mu(x \ast y) = 1 \) which implies \(x \ast y \in U(\mu; 1) \). Consequently, \(U(\mu; 1) \) is a subalgebra of \(X \).
Theorem 3.7. Let X be a medial BCH-algebra and let μ be a fuzzy subset of X such that
\[\mu(0 * x) \geq \mu(x), \quad \mu(x * (0 * y)) \geq \mu(x) \cdot \mu(y), \] (3.10)
for all $x, y \in X$. Then μ is a fuzzy dot subalgebra of X.

Proof. Since X is medial, we have $0 * (0 * y) = y$ for all $y \in X$. Hence
\[\mu(x * y) = \mu(x * (0 * (0 * y))) \geq \mu(x) \cdot \mu(0 * y) \geq \mu(x) \cdot \mu(y) \] (3.11)
for all $x, y \in X$. Therefore μ is a fuzzy dot subalgebra of X. \qed

Theorem 3.8. Let $g : X \to Y$ be a homomorphism of BCH-algebras. If ν is a fuzzy dot subalgebra of Y, then the preimage $g^{-1}[\nu]$ of ν under g is a fuzzy dot subalgebra of X.

Proof. For any $x_1, x_2 \in X$, we have
\[g^{-1}[\nu](x_1 * x_2) = \nu(g(x_1) * g(x_2)) = \nu(g(x_1)) \cdot \nu(g(x_2)) = g^{-1}[\nu](x_1) \cdot g^{-1}[\nu](x_2). \] (3.12)
Thus $g^{-1}[\nu]$ is a fuzzy dot subalgebra of X. \qed

Theorem 3.9. Let $f : X \to Y$ be an onto homomorphism of BCH-algebras. If μ is a fuzzy dot subalgebra of X, then the image $f[\mu]$ of μ under f is a fuzzy dot subalgebra of Y.

Proof. For any $y_1, y_2 \in Y$, let $A_1 = f^{-1}(y_1)$, $A_2 = f^{-1}(y_2)$, and $A_{12} = f^{-1}(y_1 * y_2)$. Consider the set
\[A_1 * A_2 := \{ x \in X \mid x = a_1 * a_2 \text{ for some } a_1 \in A_1, a_2 \in A_2 \}. \] (3.13)
If $x \in A_1 * A_2$, then $x = x_1 * x_2$ for some $x_1 \in A_1$ and $x_2 \in A_2$ so that
\[f(x) = f(x_1 * x_2) = f(x_1) * f(x_2) = y_1 * y_2, \] (3.14)
that is, $x \in f^{-1}(y_1 * y_2) = A_{12}$. Hence $A_1 * A_2 \subseteq A_{12}$. It follows that
\[f[\mu](y_1 * y_2) = \sup_{x \in f^{-1}(y_1 * y_2)} \mu(x) = \sup_{x \in A_{12}} \mu(x) \geq \sup_{x_1 \in A_1} \mu(x_1) \cdot \sup_{x_2 \in A_2} \mu(x_2) \geq \mu(x_1) \cdot \mu(x_2). \] (3.15)
Since $\cdot : [0,1] \times [0,1] \to [0,1]$ is continuous, for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\tilde{x}_1 \geq \sup_{x_1 \in A_1} \mu(x_1) - \delta$ and $\tilde{x}_2 \geq \sup_{x_2 \in A_2} \mu(x_2) - \delta$, then $\tilde{x}_1 \cdot \tilde{x}_2 \geq \sup_{x_1 \in A_1} \mu(x_1) \cdot \sup_{x_2 \in A_2} \mu(x_2) - \varepsilon$. Choose $a_1 \in A_1$ and $a_2 \in A_2$ such that $\mu(a_1) \geq ...
we have

\[
\sup_{x_1 \in A_1} \mu(x_1) - \delta \quad \text{and} \quad \mu(a_2) \geq \sup_{x_2 \in A_2} \mu(x_2) - \delta.
\]

Then

\[
\mu(a_1) \cdot \mu(a_2) \geq \sup_{x_1 \in A_1} \mu(x_1) \cdot \sup_{x_2 \in A_2} \mu(x_2) - \varepsilon. \quad (3.16)
\]

Consequently,

\[
f[\mu](y_1 \ast y_2) \geq \sup_{x_1 \in A_1, x_2 \in A_2} \mu(x_1) \cdot \mu(x_2)
\]

\[
\geq \sup_{x_1 \in A_1} \mu(x_1) \cdot \sup_{x_2 \in A_2} \mu(x_2) \quad (3.17)
\]

\[
= f[\mu](y_1) \cdot f[\mu](y_2),
\]

and hence \(f[\mu]\) is a fuzzy dot subalgebra of \(Y\). \(\Box\)

Definition 3.10. Let \(\sigma\) be a fuzzy subset of \(X\). The strongest fuzzy \(\sigma\)-relation on \(X\) is the fuzzy subset \(\mu_\sigma\) of \(X \times X\) given by \(\mu_\sigma(x, y) = \sigma(x) \cdot \sigma(y)\) for all \(x, y \in X\).

Theorem 3.11. Let \(\mu_\sigma\) be the strongest fuzzy \(\sigma\)-relation on \(X\), where \(\sigma\) is a fuzzy subset of \(X\). If \(\sigma\) is a fuzzy dot subalgebra of \(X\), then \(\mu_\sigma\) is a fuzzy dot subalgebra of \(X \times X\).

Proof. Assume that \(\sigma\) is a fuzzy dot subalgebra of \(X\). For any \(x_1, x_2, y_1, y_2 \in X\), we have

\[
\mu_\sigma((x_1, y_1) \ast (x_2, y_2)) = \mu_\sigma(x_1 \ast x_2, y_1 \ast y_2)
\]

\[
= \sigma(x_1 \ast x_2) \cdot \sigma(y_1 \ast y_2)
\]

\[
\geq (\sigma(x_1) \cdot \sigma(x_2)) \cdot (\sigma(y_1) \cdot \sigma(y_2)) \quad (3.18)
\]

\[
= (\sigma(x_1) \cdot \sigma(y_1)) \cdot (\sigma(x_2) \cdot \sigma(y_2))
\]

\[
= \mu_\sigma(x_1, y_1) \cdot \mu_\sigma(x_2, y_2),
\]

and so \(\mu_\sigma\) is a fuzzy dot subalgebra of \(X \times X\). \(\Box\)

Definition 3.12. Let \(\sigma\) be a fuzzy subset of \(X\). A fuzzy relation \(\mu\) on \(X\) is called a fuzzy \(\sigma\)-product relation if \(\mu(x, y) \geq \sigma(x) \cdot \sigma(y)\) for all \(x, y \in X\).

Definition 3.13. Let \(\sigma\) be a fuzzy subset of \(X\). A fuzzy relation \(\mu\) on \(X\) is called a left fuzzy relation on \(\sigma\) if \(\mu(x, y) = \sigma(x)\) for all \(x, y \in X\).

Similarly, we can define a right fuzzy relation on \(\sigma\). Note that a left (resp., right) fuzzy relation on \(\sigma\) is a fuzzy \(\sigma\)-product relation.

Theorem 3.14. Let \(\mu\) be a left fuzzy relation on a fuzzy subset \(\sigma\) of \(X\). If \(\mu\) is a fuzzy dot subalgebra of \(X \times X\), then \(\sigma\) is a fuzzy dot subalgebra of \(X\).

Proof. Assume that a left fuzzy relation \(\mu\) on \(\sigma\) is a fuzzy dot subalgebra of \(X \times X\). Then

\[
\sigma(x_1 \ast x_2) = \mu(x_1 \ast x_2, y_1 \ast y_2) = \mu((x_1, y_1) \ast (x_2, y_2))
\]

\[
\geq \mu(x_1, y_1) \cdot \mu(x_2, y_2) = \sigma(x_1) \cdot \sigma(x_2) \quad (3.19)
\]

for all \(x_1, x_2, y_1, y_2 \in X\). Hence \(\sigma\) is a fuzzy dot subalgebra of \(X\). \(\Box\)
Theorem 3.15. Let μ be a fuzzy relation on X satisfying the inequality $\mu(x,y) \leq \mu(x,0)$ for all $x, y \in X$. Given $z \in X$, let σ_z be a fuzzy subset of X defined by $\sigma_z(x) = \mu(x,z)$ for all $x \in X$. If μ is a fuzzy dot subalgebra of $X \times X$, then σ_z is a fuzzy dot subalgebra of X for all $z \in X$.

Proof. Let $z, x, y \in X$, then
\[
\sigma_z(x \ast y) = \mu(x \ast y, z) = \mu((x,z) \ast (y,0)) \\
\geq \mu(x,z) \cdot \mu(y,0) = \mu(x,z) \cdot \sigma_z(y),
\] (3.20)
completing the proof. \qed

Theorem 3.16. Let μ be a fuzzy relation on X and let σ_μ be a fuzzy subset of X given by $\sigma_\mu(x) = \inf_{y \in X} \mu(x,y) \cdot \mu(y,x)$ for all $x \in X$. If μ is a fuzzy dot subalgebra of $X \times X$ satisfying the equality $\mu(x,0) = 1 = \mu(0,x)$ for all $x \in X$, then σ_μ is a fuzzy dot subalgebra of X.

Proof. For any $x, y, z \in X$, we have
\[
\mu(x \ast y, z) = \mu(x \ast y, z \ast 0) = \mu((x,z) \ast (y,0)) \\
\geq \mu(x,z) \cdot \mu(y,0) = \mu(x,z),
\]
\[
\mu(z, x \ast y) = \mu(z \ast 0, x \ast y) = \mu((z,x) \ast (0,y)) \\
\geq \mu(z,x) \cdot \mu(0,y) = \mu(z,x).
\] (3.21)
It follows that\[
\mu(x \ast y, z) \cdot \mu(z, x \ast y) \geq \mu(x,z) \cdot \mu(z,x)
\]
\[
\geq (\mu(x,z) \cdot \mu(z,x)) \cdot (\mu(y,z) \cdot \mu(z,y))
\] (3.22)
so that\[
\sigma_\mu(x \ast y) = \inf_{z \in X} \mu(x \ast y, z) \cdot \mu(z, x \ast y)
\]
\[
\geq \left(\inf_{z \in X} \mu(x,z) \cdot \mu(z,x) \right) \cdot \left(\inf_{z \in X} \mu(y,z) \cdot \mu(z,y) \right)
\] (3.23)
\[
= \sigma_\mu(x) \cdot \sigma_\mu(y).
\]
This completes the proof. \qed

Definition 3.17 (see Choudhury et al. [3]). A fuzzy map f from a set X to a set Y is an ordinary map from X to the set of all fuzzy subsets of Y satisfying the following conditions:

(C1) for all $x \in X$, there exists $y_x \in X$ such that $f(x)(y_x) = 1$,
(C2) for all $x \in X$, $f(x)(y_1) = f(x)(y_2)$ implies $y_1 = y_2$.

One observes that a fuzzy map f from X to Y gives rise to a unique ordinary map $\mu_f : X \times X \to I$, given by $\mu_f(x,y) = f(x)(y)$. One also notes that a fuzzy map from X to Y gives a unique ordinary map $f_1 : X \to Y$ defined as $f_1(x) = y_x$.

Definition 3.18. A fuzzy map f from a BCH-algebra X to a BCH-algebra Y is called a fuzzy homomorphism if

$$
\mu_f(x_1 \ast x_2, y) = \sup_{y=y_1 \ast y_2} \mu_f(x_1, y_1) \cdot \mu_f(x_2, y_2)
$$

(3.24)

for all $x_1, x_2 \in X$ and $y \in Y$.

One notes that if f is an ordinary map, then the above definition reduces to an ordinary homomorphism. One also observes that if a fuzzy map f is a fuzzy homomorphism, then the induced ordinary map f_1 is an ordinary homomorphism.

Proposition 3.19. Let $f : X \to Y$ be a fuzzy homomorphism of BCH-algebras. Then

(i) $\mu_f(x_1 \ast x_2, y_1 \ast y_2) \geq \mu_f(x_1, y_1) \cdot \mu_f(x_2, y_2)$ for all $x_1, x_2 \in X$ and $y_1, y_2 \in Y$.

(ii) $\mu_f(0, 0) = 1$.

(iii) $\mu_f(0 \ast x, 0 \ast y) \geq \mu_f(x, y)$ for all $x \in X$ and $y \in Y$.

(iv) If Y is medial and $\mu_f(x, y) = t \neq 0$, then $\mu_f(0, y_x \ast y) = t$ for all $x \in X$ and $y \in Y$, where $y_x \in Y$ with $\mu_f(x, y_x) = 1$.

Proof.

(i) For every $x_1, x_2 \in X$ and $y_1, y_2 \in Y$, we have

$$
\mu_f(x_1 \ast x_2, y_1 \ast y_2) = \sup_{y_1 \ast y_2 = y_1 \ast y_2} \mu_f(x_1, y_1) \cdot \mu_f(x_2, y_2)
$$

(3.25)

$$
\geq \mu_f(x_1, y_1) \cdot \mu_f(x_2, y_2).
$$

(ii) Let $x \in X$ and $y_x \in Y$ be such that $\mu_f(x, y_x) = 1$. Using (i) and (i), we get

$$
\mu_f(0, 0) = \mu_f(x \ast x, y_x \ast y_x) \geq \mu_f(x, y_x) \cdot \mu_f(x, y_x) = 1
$$

(3.26)

and so $\mu_f(0, 0) = 1$.

(iii) The proof follows from (i) and (ii).

(iv) Assume that Y is medial and $\mu_f(x, y) = t \neq 0$ for all $x \in X$ and $y \in Y$, and let $y_x \in Y$ be such that $\mu_f(x, y_x) = 1$. Then

$$
\mu_f(0, y_x \ast y) = \mu_f(x \ast x, y_x \ast y) \geq \mu_f(x, y_x) \cdot \mu_f(x, y)
$$

$$
= t = \mu_f(x, y) = \mu_f(x \ast 0, y_x \ast (y_x \ast y))
$$

(3.27)

$$
\geq \mu_f(x, y_x) \cdot \mu_f(0, y_x \ast y) = \mu_f(0, y_x \ast y),
$$

and hence $\mu_f(0, y_x \ast y) = t$. This completes the proof. \qed

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-99-005-D00003).

References

Sung Min Hong: Department of Mathematics, Gyeongsang National University, Chinju, 660-701, Korea

E-mail address: smhong@nongae.gsnu.ac.kr

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr

Seon Jeong Kim: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: skim@nongae.gsnu.ac.kr

Gwang Il Kim: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: gikim@nongae.gsnu.ac.kr
Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be