ON n-FOLD FUZZY IMPLICATIVE/COMMUTATIVE IDEALS OF BCK-ALGEBRAS

YOUNG BAE JUN

(Received 3 November 2000)

Abstract. We consider the fuzzification of the notion of an n-fold implicative ideal, an n-fold (weak) commutative ideal. We give characterizations of an n-fold fuzzy implicative ideal. We establish an extension property for n-fold fuzzy commutative ideals.

2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.

1. Introduction. Huang and Chen [1] introduced the notion of n-fold implicative ideals and n-fold (weak) commutative ideals. The aim of this paper is to discuss the fuzzification of n-fold implicative ideals, n-fold commutative ideals and n-fold weak commutative ideals. We show that every n-fold fuzzy implicative ideal is an n-fold fuzzy positive implicative ideal, and so a fuzzy ideal, and give a condition for a fuzzy ideal to be an n-fold fuzzy implicative ideal. Using the level set, we provide a characterization of an n-fold fuzzy implicative ideal. We also give a condition for a fuzzy ideal to be an n-fold fuzzy (weak) commutative ideal. We show that every n-fold fuzzy positive implicative ideal which is an n-fold fuzzy weak commutative ideal is an n-fold fuzzy implicative ideal. Finally, we establish an extension property for n-fold fuzzy commutative ideals.

2. Preliminaries. We include some elementary aspects of BCK-algebras that are necessary for this paper, and for more details we refer to [1, 2, 4, 5]. By a BCK-algebra we mean an algebra \((X; *, 0)\) of type \((2, 0)\) satisfying the axioms:

(I) \(((x * y) * (x * z)) * (z * y) = 0\),
(II) \((x * (x * y)) * y = 0\),
(III) \(x * x = 0\),
(IV) \(0 * x = 0\),
(V) \(x * y = 0\) and \(y * x = 0\) imply \(x = y\), for all \(x, y, z \in X\).

We can define a partial ordering \(\leq\) on \(X\) by \(x \leq y\) if and only if \(x * y = 0\). In any BCK-algebra \(X\), the following hold:

(P1) \(x * 0 = x\),
(P2) \(x * y \leq x\),
(P3) \((x * y) * z = (x * z) * y\),
(P4) \((x * z) * (y * z) \leq x * y\),
(P5) \(x \leq y\) implies \(x * z \leq y * z\) and \(z * y \leq z * x\).

Throughout, \(X\) will always mean a BCK-algebra unless otherwise specified. A non-empty subset \(I\) of \(X\) is called an ideal of \(X\) if it satisfies:

(I1) \(0 \in I\),
(I2) $x \ast y \in I$ and $y \in I$ imply $x \in I$.
A nonempty subset I of X is said to be an implicative ideal of X if it satisfies:
(I1) $0 \in I$,
(I3) $(x \ast (y \ast x)) \ast z \in I$ and $z \in I$ imply $x \in I$.
A nonempty subset I of X is said to be a commutative ideal of X if it satisfies:
(I1) $0 \in I$,
(I4) $(x \ast y) \ast z \in I$ and $z \in I$ imply $x \ast (y \ast (y \ast x)) \in I$.
We now review some fuzzy logic concepts. A fuzzy set in a set X is a function
$f : X \to [0, 1]$. For a fuzzy set f in X and $t \in [0, 1]$ define $U(f; t)$ to be the set
$U(f; t) := \{x \in X | f(x) \geq t\}$.
A fuzzy set f in X is said to be a fuzzy implicative ideal of X if it satisfies:
(F1) $f(0) \geq f(x)$ for all $x \in X$,
(F3) $f(x) \geq \min\{f((x \ast (y \ast x)) \ast z), f(z)\}$ for all $x, y, z \in X$.
A fuzzy set f in X is called a fuzzy commutative ideal of X if it satisfies:
(F1) $f(0) \geq f(x)$ for all $x \in X$,
(F4) $f(x \ast (y \ast (y \ast x))) \geq \min\{f((x \ast y) \ast z), f(z)\}$ for all $x, y, z \in X$.

3. n-fold fuzzy implicative ideals. For any elements x and y of a BCK-algebra X, $x \ast y^n$ denotes
$(\cdots ((x \ast y) \ast y) \ast \cdots) \ast y$ (3.1)
in which y occurs n times. Huang and Chen [1] introduced the concept of n-fold
implicative ideals as follows.

Definition 3.1 (see [1]). A subset A of X is called an n-fold implicative ideal of X if
(I1) $0 \in A$,
(I5) $(x \ast (y \ast x^n)) \ast z \in A$ and $z \in A$ imply $x \in A$ for every $x, y, z \in X$.
We consider the fuzzification of the concept of n-fold implicative ideal.

Definition 3.2. A fuzzy set f in X is called an n-fold fuzzy implicative ideal of X if
(F1) $f(0) \geq f(x)$ for all $x \in X$,
(F5) $f(x) \geq \min\{f((x \ast (y \ast x^n)) \ast z), f(z)\}$ for every $x, y, z \in X$.
Notice that the 1-fold fuzzy implicative ideal is a fuzzy implicative ideal.

Theorem 3.3. Every n-fold fuzzy implicative ideal is a fuzzy ideal.

Proof. The condition (F2) follows from taking $y = 0$ in (F5).

The following example shows that the converse of Theorem 3.3 may not be true.
Example 3.4

Let \(X = \mathbb{N} \cup \{0\} \), where \(\mathbb{N} \) is the set of natural numbers, in which the operation \(\ast \) is defined by \(x \ast y = \max\{0, x - y\} \) for all \(x, y \in X \). Then \(X \) is a BCK-algebra (see [1, Example 1.3]). Let \(\mu \) be a fuzzy set in \(X \) given by \(\mu(0) = t_0 > t_1 = \mu(x) \) for all \(x \neq 0 \in X \). Then \(\mu \) is a fuzzy ideal of \(X \). But \(\mu \) is not a 2-fold fuzzy implicative ideal of \(X \) because

\[
\mu(3) = t_1 < t_0 = \mu(0) = \min\{\mu((3 \ast (14 \ast 3^2)) \ast 0), \mu(0)\}. \tag{3.2}
\]

We give a condition for a fuzzy ideal to be an \(n \)-fold fuzzy implicative ideal.

Theorem 3.5

A fuzzy ideal \(\mu \) of \(X \) is \(n \)-fold fuzzy implicative if and only if \(\mu(x) \geq \mu(x \ast (y \ast x^n)) \) for all \(x, y \in X \).

Proof. Necessity is by taking \(z = 0 \) in (F5). Suppose that a fuzzy ideal \(\mu \) satisfies the inequality \(\mu(x) \geq \mu(x \ast (y \ast x^n)) \) for all \(x, y \in X \). Then

\[
\mu(x) \geq \mu(x \ast (y \ast x^n)) \geq \min\{\mu((x \ast (y \ast x^n)) \ast z), \mu(z)\}. \tag{3.3}
\]

Hence \(\mu \) is an \(n \)-fold fuzzy implicative ideal of \(X \).

Theorem 3.6

A fuzzy set \(\mu \) in \(X \) is an \(n \)-fold fuzzy implicative ideal of \(X \) if and only if the nonempty level set \(U(\mu; t) \) of \(\mu \) is an \(n \)-fold implicative ideal of \(X \) for every \(t \in [0, 1] \).

Proof. Assume that \(\mu \) is an \(n \)-fold fuzzy implicative ideal of \(X \) and \(U(\mu; t) \neq \emptyset \) for every \(t \in [0, 1] \). Then there exists \(x \in U(\mu; t) \). It follows from (F1) that \(\mu(0) \geq \mu(x) \geq t \) so that \(0 \in U(\mu; t) \). Let \(x, y, z \in X \) be such that \((x \ast (y \ast x^n)) \ast z \in U(\mu; t) \) and \(z \in U(\mu; t) \). Then \(\mu((x \ast (y \ast x^n)) \ast z) \geq t \) and \(\mu(z) \geq t \), which imply from (F5) that

\[
\mu(x) \geq \min\{\mu((x \ast (y \ast x^n)) \ast z), \mu(z)\} \geq t \tag{3.4}
\]

so that \(x \in U(\mu; t) \). Therefore \(U(\mu; t) \) is an \(n \)-fold implicative ideal of \(X \). Conversely, suppose that \(U(\mu; t) \neq \emptyset \) is an \(n \)-fold implicative ideal of \(X \) for every \(t \in [0, 1] \). For any \(x \in X \), let \(\mu(x) = t \). Then \(x \in U(\mu; t) \). Since \(0 \in U(\mu; t) \), we get \(\mu(0) = t = \mu(x) \) and so \(\mu(0) \geq \mu(x) \) for all \(x \in X \). Now assume that there exist \(a, b, c \in X \) such that

\[
\mu(a) < \min\{\mu((a \ast (b \ast a^n)) \ast c), \mu(c)\}. \tag{3.5}
\]

Selecting \(s_0 = (1/2)\mu(a) + \min\{\mu((a \ast (b \ast a^n)) \ast c), \mu(c)\} \), then

\[
\mu(a) < s_0 < \min\{\mu((a \ast (b \ast a^n)) \ast c), \mu(c)\}. \tag{3.6}
\]

It follows that \((a \ast (b \ast a^n)) \ast c \in U(\mu; s_0) \), \(c \in U(\mu; s_0) \), and \(a \notin U(\mu; s_0) \). This is a contradiction. Hence \(\mu \) is an \(n \)-fold fuzzy implicative ideal of \(X \).

Definition 3.7

(see [3]). A fuzzy set \(\mu \) in \(X \) is called an \(n \)-fold fuzzy positive implicative ideal of \(X \) if

\((F1) \quad \mu(0) \geq \mu(x) \) for all \(x \in X \),
\((F6) \quad \mu(x \ast y^n) \geq \min\{\mu((x \ast y^{n+1}) \ast z), \mu(z)\} \) for all \(x, y, z \in X \).
Lemma 3.8 (see [3, Theorem 3.13]). Let μ be a fuzzy set in X. Then μ is an n-fold fuzzy positive implicative ideal of X if and only if the nonempty level set $U(\mu; t)$ of μ is an n-fold positive implicative ideal of X for every $t \in [0, 1]$.

Lemma 3.9 (see [1, Theorem 2.5]). Every n-fold implicative ideal is an n-fold positive implicative ideal.

Using Theorem 3.6 and Lemmas 3.8 and 3.9, we have the following theorem.

Theorem 3.10. Every n-fold fuzzy implicative ideal is an n-fold fuzzy positive implicative ideal.

4. n-fold fuzzy commutative ideals

Definition 4.1 (see [1]). A subset A of X is called an n-fold commutative ideal of X if

(I1) $0 \in A$,

(I6) $(x \ast y) \ast z \in A$ and $z \in A$ imply $x \ast (y \ast (y \ast x^n)) \in A$ for all $x, y, z \in X$.

A subset A of X is called an n-fold weak commutative ideal of X if

(I1) $0 \in A$,

(I7) $(x \ast (x \ast y^n)) \ast z \in A$ and $z \in A$ imply $y \ast (y \ast x) \in A$ for all $x, y, z \in X$.

We consider the fuzzification of n-fold (weak) commutative ideals as follows.

Definition 4.2. A fuzzy set μ in X is called an n-fold fuzzy commutative ideal of X if

(F1) $\mu(0) \geq \mu(x)$ for all $x \in X$,

(F7) $\mu(x \ast (y \ast (y \ast x^n))) \geq \min\{\mu((x \ast y) \ast z), \mu(z)\}$ for all $x, y, z \in X$.

A fuzzy set μ in X is called an n-fold fuzzy weak commutative ideal of X if

(F1) $\mu(0) \geq \mu(x)$ for all $x \in X$,

(F8) $\mu(y \ast (y \ast x)) \geq \min\{\mu((x \ast (x \ast y^n)) \ast z), \mu(z)\}$ for all $x, y, z \in X$.

Note that the 1-fold fuzzy commutative ideal is a fuzzy commutative ideal. Putting $y = 0$ and $y = x$ in (F7) and (F8), respectively, we know that every n-fold fuzzy commutative (or fuzzy weak commutative) ideal is a fuzzy ideal.

Theorem 4.3. Let μ be a fuzzy ideal of X. Then

(i) μ is an n-fold fuzzy commutative ideal of X if and only if

$$\mu(x \ast (y \ast (y \ast x^n))) \geq \mu(x \ast y) \quad \forall x, y \in X.$$ \hspace{1cm} (4.1)

(ii) μ is an n-fold fuzzy weak commutative ideal of X if and only if

$$\mu(y \ast (y \ast x)) \geq \mu(x \ast (x \ast y^n)) \quad \forall x, y \in X.$$ \hspace{1cm} (4.2)

Proof. The proof is straightforward. \qed

Lemma 4.4 (see [3, Theorem 3.12]). A fuzzy set μ in X is an n-fold fuzzy positive implicative ideal of X if and only if μ is a fuzzy ideal of X in which the following inequality holds:

(F9) $\mu((x \ast z^n) \ast (y \ast z^n)) \geq \mu((x \ast y) \ast z^n) \quad \forall x, y, z \in X$.
\textbf{Theorem 4.5.} If μ is both an n-fold fuzzy positive implicative ideal and an n-fold fuzzy weak commutative ideal of X, then it is an n-fold fuzzy implicative ideal of X.

\textbf{Proof.} Let $x, y \in X$. Using \textbf{Theorem 4.3(ii)}, \textbf{Lemma 4.4}, (P3), and (III), we have
\begin{align*}
\mu(x \ast (x \ast (y \ast x^n))) & \geq \mu((y \ast x^n) \ast ((y \ast x^n) \ast x^n)) \\
& \geq \mu((y \ast (y \ast x^n)) \ast x^n) \\
& = \mu((y \ast x^n) \ast (y \ast x^n)) \\
& = \mu(0). \\
\end{align*}
(4.3)

It follows from (F1) and (F2) that
\begin{align*}
\mu(x) & \geq \min\{\mu(x \ast (x \ast (y \ast x^n))), \mu(x \ast (y \ast x^n))\} \\
& \geq \min\{\mu(0), \mu(x \ast (y \ast x^n))\} \\
& = \mu(x \ast (y \ast x^n)). \\
\end{align*}
(4.4)

so from \textbf{Theorem 3.5}, μ is an n-fold fuzzy implicative ideal of X. \hfill \Box

\textbf{Theorem 4.6} (extension property for n-fold fuzzy commutative ideals). Let μ and ν be fuzzy ideals of X such that $\mu(0) = \nu(0)$ and $\mu \subseteq \nu$, that is, $\mu(x) \leq \nu(x)$ for all $x \in X$. If μ is an n-fold fuzzy commutative ideal of X, then so is ν.

\textbf{Proof.} Let $x, y \in X$. Taking $u = x \ast (x \ast y)$, we have
\begin{align*}
\nu(0) = \mu(0) = \mu(u \ast y) \\
& \leq \mu(u \ast (y \ast (y \ast u^n))) \\
& \leq \nu(u \ast (y \ast (y \ast u^n))) \\
& = \nu((x \ast (x \ast y)) \ast (y \ast (y \ast u^n))) \\
& = \nu((x \ast (y \ast (y \ast u^n))) \ast (x \ast y)). \\
\end{align*}
(4.5)

Since $x \ast (y \ast (y \ast x^n)) \leq x \ast (y \ast (y \ast u^n))$ and since ν is order reversing, it follows that
\begin{align*}
\nu(x \ast (y \ast (y \ast x^n))) & \geq \nu(x \ast (y \ast (y \ast u^n))) \\
& \geq \min\{\nu((x \ast (y \ast (y \ast u^n))) \ast (x \ast y)), \nu(x \ast y)\} \\
& \geq \min\{\nu(0), \nu(x \ast y)\} \\
& = \nu(x \ast y). \\
\end{align*}
(4.6)

Hence, by \textbf{Theorem 4.3(i)}, ν is an n-fold fuzzy commutative ideal of X. \hfill \Box

\textbf{Acknowledgement.} This work was supported by Korea Research Foundation Grant (KRF-2000-005-D00003).

\textbf{References}

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be