DUAL PAIRS OF SEQUENCE SPACES

JOHANN BOOS and TOIVO LEIGER

(Received 31 January 2001)

Abstract. The paper aims to develop for sequence spaces E a general concept for recon-
ciling certain results, for example inclusion theorems, concerning generalizations of the
Köthe-Toeplitz duals E^\times ($\times \in \{\alpha, \beta\}$) combined with dualities (E,G), $G \subset E^\times$, and the SAK-
property (weak sectional convergence). Taking $E^\beta := \{(y_k)_k \in \omega := \mathbb{K}^\mathbb{N} \mid (y_k x_k) \in cs\} =: E^s$, where cs denotes the set of all summable sequences, as a starting point, then we get
a general substitute of E^s by replacing cs by any locally convex sequence space S with
sum $s \in S'$ (in particular, a sum space) as defined by Ruckle (1970). This idea provides a
dual pair (E,E^s) of sequence spaces and gives rise for a generalization of the solid topol-
ogy and for the investigation of the continuity of quasi-matrix maps relative to topologies
of the duality (E,E^β). That research is the basis for general versions of three types of
inclusion theorems: two of them are originally due to Bennett and Kalton (1973) and gen-
eralized by the authors (see Boos and Leiger (1993 and 1997)), and the third was done
by Große-Erdmann (1992). Finally, the generalizations, carried out in this paper, are justi-
fied by four applications with results around different kinds of Köthe-Toeplitz duals and
related section properties.

2000 Mathematics Subject Classification. 46A45, 46A20, 46A30, 40A05.

1. Introduction. In summability as well as in investigations of topological sequence
spaces E the duality (E,E^β), where E^β denotes the β-dual of E, plays an essential role.
For example, if an FK-space E has the SAK-property (weak sectional convergence), then
the topological dual E' can be identified with E^β. Further and more deep-seated con-
nections between topological properties of the dual pair (E,E^β) and the SAK-property,
the continuity of matrix maps on E and the structure of domains of matrix methods
have been presented, for example, in well-known inclusion theorems by Bennett and
Kalton [3, Theorems 4 and 5] (see also [5, 6] for generalizations).

The SAK-property has been generalized and modified by several authors in dif-
ferent directions whereby several generalizations and modifications of the notion
of the β-dual has been treated: Buntinas [8] and Meyers [15] as well as further au-
thors have investigated the STK-property (weak T-sectional convergence) in K-spaces
E and the corresponding $\beta(T)$-duals, where T is an Sp_1-matrix; Fleming and DeFranza
[10, 11] have dealt with the USTK-property (unconditionally weak T-sectional conver-
gence) and the corresponding $\alpha(T)$-dual in case of an Sp^*_1-matrix T. That complex
of problems is also connected with the USAK-property of sequence spaces (cf. Sember
[19], Sember and Raphael [18] as well as Swartz [20], Swartz and Stuart [21]),
in particular properties of the duality (E,E^α) where E^α denotes the α-dual of E;
moreover, Buntinas and Tanović-Miller [9] investigated the strong SAK-property of
FK-spaces.
In the present paper, we define and investigate—on the base of the general notion of a sum introduced by Ruckle [17]—dual pairs \((E, E^S)\) where \(E\) is a sequence space, \(S\) is a \(K\)-space on which a sum is defined in the sense of Ruckle, and \(E^S\) is the linear space of all corresponding factor sequences. In this connection we introduce and study in Sections 3 and 5 the \(SK\)-property which corresponds with the \(SAK\)-property and the so-called quasi-matrix maps \(\mathcal{A}\), respectively. In particular, we describe the continuity of \(\mathcal{A}\) and a natural topological structure of the domain \(F_\mathcal{A}\) of \(\mathcal{A}\) where \(F\) is a \(K\)-space. By means of those results, in Section 6 we formulate and prove in that general situation the mentioned inclusion theorems as well as a further theorem of Bennett-Kalton type due to Große-Erdmann [12]. The fact that all mentioned modifications of the \(SAK\)-property and of the \(\beta\)-dual are special cases of the \(SK\)-property and the factor sequence space \(ES\), respectively, enables us to deduce in Section 7 from the general inclusion theorems, proved in this paper, those in the listed special cases.

2. Notation and preliminaries. The terminology from the theory of locally convex spaces and summability is standard, we refer to Wilansky [23, 24].

For a given dual pair \((E, F)\) of linear spaces \(E\) and \(F\) over \(\mathbb{K}\) (\(\mathbb{K} := \mathbb{R}\) or \(\mathbb{C}\)) we denote by \(\sigma (E, F)\), \(\tau (E, F)\), and \(\beta (E, F)\) the weak topology, the Mackey topology and the strong topology, respectively. If \((E, \tau_E)\) is a given locally convex space, then \(E^*\) and \(E'\) denotes respectively, the algebraic dual of \(E\) and the topological dual of \((E, \tau_E)\).

A sequence space is a (linear) subspace of the space \(\omega\) of all complex (or real) sequences \(x = (x_k)\). The sequence space \(\varphi\) is defined to be the set of all finitely nonzero sequences. Obviously, \(\varphi = \text{span}\{e^k \mid k \in \mathbb{N}\}\), where \(e^k := (0, \ldots, 0, 1, 0 \ldots)\) with “1” in the \(k\)th position, and \(\varphi\) contains obviously for each \(x \in \omega\) its sections \(x^{[n]} := \sum_{k=1}^{n} x_k e^k (n \in \mathbb{N})\).

If a sequence space \(E\) carries a locally convex topology such that the coordinate functionals \(\pi_n (n \in \mathbb{N})\) defined by \(\pi_n (x) = x_n\) are continuous, then \(E\) is called a \(K\)-space. For every \(K\)-space \(E\) the space \(\varphi\) is a \(\sigma (E', E)\)-dense subspace of \(E'\) where \(\varphi\) is identified with \(\text{span}\{\pi_n \mid n \in \mathbb{N}\}\). A \(K\)-space which is a Fréchet (Banach) space is called an \(FK\)-(\(BK\)-)space. The sequence spaces

\[
\begin{align*}
 m & := \left\{ x \in \omega \mid \|x\|_\infty := \sup_k |x_k| < \infty \right\}, \\
 c & := \left\{ x \in \omega \mid (x_k) \text{ converges, that is } \lim x := \lim_k x_k \text{ exists} \right\}, \\
 c_0 & := \left\{ x \in c \mid \lim x = 0 \right\}, \\
 cs & := \left\{ x \in \omega \mid \sum_k x_k \text{ converges} \right\}, \\
 \ell & := \left\{ x \in \omega \mid \sum_k |x_k| < \infty \right\}, \\
 bv & := \left\{ x \in \omega \mid \sum_k |x_k - x_{k+1}| < \infty \right\},
\end{align*}
\]

(together with their natural norm) are important as well as well-known examples of
\[BK\text{-spaces. Furthermore, }\omega \text{ is an FK-space where its (unique) FK-topology is generated by the family of semi-norms } r_k, \ r_k(x) := |x_k| \ (x \in \omega, \ k \in \mathbb{N}). \]

For sequence spaces \(E \) and \(F \) we use the notation
\[
E \cdot F := \{ yx := (y_k x_k) \mid y \in E, \ x \in F \}, \\
E^F := \{ y \in \omega \mid \forall x \in E : yx \in F \}.
\]

(2.2)

In this way, the well-known \(\alpha \)-dual \(E^\alpha \) and \(\beta \)-dual \(E^\beta \) of \(E \) are defined as \(E^\alpha := E^F \) and \(E^\beta := E^{\psi} \), respectively.

If \(E \) is a \(K \)-space that contains \(\varphi \), then
\[
E^F := \{ u_\varphi := (f(\varphi_k)) \mid f \in E' \}
\]

is called \(f \)-dual of \(E \). (Note, throughout we will use the notation \(u_\varphi := (p(\varphi_k)) \) for each functional \(p : E \to \mathbb{K} \).) Moreover, we put
\[
E_{SAK} := \left\{ x \in E \mid \forall f \in E' : f(x) = \sum_k x_k f(\varphi_k) \right\}, \\
E_{USAK} := \left\{ x \in E \mid \forall f \in E' : f(x) = \lim_{\varphi \in \Phi} \sum_k x_k f(\varphi_k) \right\},
\]

(2.4)

where \(\Phi \) is the set of all finite subsets of \(\mathbb{N} \) directed by “set inclusion” (cf. [18, 19]).

A \(K \)-space \(E \) is called a \(SAK \)-(USAK)-space if \(E = E_{SAK} \) (\(E = E_{USAK} \)). If \(\varphi = E \), then \(E \) is an \(AD \)-space by definition.

Let \(A = (a_{nk}) \) be an infinite matrix. For a sequence space \(E \) we call
\[
E_A := \left\{ x \in \omega \mid Ax := \left(\sum_k a_{nk} x_k \right)_n \text{ exists and } Ax \in E \right\}
\]

(2.5)

domain of \(A \) (relative to \(E \)). If \(E \) is a (separable) FK-space, then \(E_A \) is too. In particular, the domain \(c_A = \{ x \in \omega_A \mid \lim_A x := \lim Ax \text{ exists} \} \) is a separable FK-space.

Obviously, \(\varphi \subset c_A \) if and only if \(a_k := \lim_n a_{nk} \) exists for every \(k \in \mathbb{N} \). A is called an \(Sp_1 \)-matrix if \(a_{k} = 1 \ (k \in \mathbb{N}) \), and an \(Sp_\ast \)-matrix if, in addition, each column of \(A \) belongs to \(bv \). If \(E \) and \(F \) are sequence spaces with \(E \subset F_A \), then the linear map \(A : E \to F, x \to Ax \) is called matrix map.

Let \(E \) be a linear space. For a subset \(M \) of \(E^* \) we use the following notation:
\[
\widehat{M} := \{ g \in E^* \mid \exists (g_n) \text{ in } M \text{ such that } g_n \to g(\sigma(E^*,E)) \},
\]

\[
\overline{M} := \bigcap \left\{ L \subset E^* \mid L \text{ is a linear subspace of } E^* \text{ and } M \subset L = \overline{L} \right\},
\]

\[
\widehat{M}^\phi := \{ g \in E^* \mid \exists (g_\alpha)_{\alpha \in \mathcal{A}} \text{ in } M \text{ such that } g_\alpha \to g(\sigma(E^*,E)) \},
\]

\[
\overline{M}^\phi := \bigcap \left\{ L \subset E^* \mid L \text{ is a linear subspace of } E^* \text{ and } M \subset L = \overline{L}^\phi \right\}.
\]

(2.6)

Following [5, 6], a \(K \)-space \(E \) is called an \(L_\varphi \)-space and an \(A_\varphi \)-space, if \(E' \subset \varphi^\prime \) and \(E^\prime \subset \varphi^\phi \), respectively. Note, \(\tau(E,\varphi^\phi) \) and \(\tau(E,\varphi^\phi) \) is, respectively, the strongest \(L_\varphi \)-topology and \(A_\varphi \)-topology on an arbitrarily given sequence space \(E \).
Theorem 2.1 (see [6, Theorems 3.2 and 3.9]; see also [4, 5]). Let F be a K-space.

(a) F is an L_φ-space if and only if for each Mackey K-space E with $\sigma(E',E)$-sequentially complete each matrix map $A : E \to F$ is continuous.

(b) F is an A_φ-space if and only if for every barrelled K-space E each matrix map $A : E \to F$ is continuous.

Theorem 2.2 (see [6, Theorem 4.8]; see also [4]). Let $A = (a_{nk})$ be a matrix. If E is any L_φ-space (A_φ-space), then E_A (endowed with its natural topology) is an L_φ-space (A_φ-space).

3. Dual pairs (E,E^S)

Throughout, let (S,τ_S) be a K-space containing φ where τ_S is generated by a family \mathcal{H} of semi-norms, and, moreover, let $s \in S'$ be a sum on S (cf. [17]), that is,

$$s(z) = \sum_k z_k \quad \text{for each } z \in \varphi.$$

Furthermore, let E be a sequence space containing φ. Then (E,E^S) is a dual pair where its bilinear form \langle , \rangle is defined by $\langle x,y \rangle := s(y \cdot x)$ for all $x \in E$, $y \in E^S$; therefore $E^S \subset E^*$ (up to isomorphism where the isomorphism $E^S \to E^*$ is given by $y \to s \circ \text{diag}_y : E \to K$ and diag_y is the diagonal matrix (map on E) defined by u). Because of $\varphi \subset E^S$, the weak topology $\sigma(E,E^S)$ is a K-topology. In case of

$$S := \text{cs}, \quad s(z) := \sum_k z_k := \lim_{n \to \infty} \sum_{k=1}^n z_k \quad (z \in \text{css}),$$

$$S := \ell, \quad s(z) := \lim_{F \in \Phi} \sum_{k \in F} z_k \quad (z \in \ell),$$

we get the dual pairs (E,E^β) and (E,E^α), respectively, which play a fundamental role in summability and the study of topological sequence spaces.

Obviously, $E^\beta \subset E'$ if E is a K-space and $(E',\sigma(E',E))$ is sequentially complete. For example, the latter holds for all barrelled K-spaces.

In view of this remark it is natural to ask for sufficient conditions in order that the inclusion $E^S \subset E'$ holds (up to isomorphism). Aiming an answer to this question we mention (cf. **Theorem 2.1**) that a matrix map $A : E \to S$ is continuous if one of the following conditions occurs:

(A) S is an L_φ-space, E is a K-space equipped with the Mackey topology $\tau(E,E')$, and $(E',\sigma(E',E))$ is sequentially complete.

(B) S is an A_φ-space and E is a barrelled K-space.

In particular, (A) as well as (B) implies for each $y \in E^S$ the continuity of the matrix map $\text{diag}_y : E \to S$. Thus we have the following proposition.

Proposition 3.1. If E as well as S enjoy one of the statements (A) or (B), then $E^S \subset E'$.

Remark 3.2. Let E be a sequence space with $\varphi \subset E$. One may easily check that $(\varphi',\sigma(\varphi',E))$ is sequentially complete, and $(E,\tau(E,\varphi^b))$ is barrelled. As immediate consequences of **Proposition 3.1** we obtain that $E^S \subset \varphi$ for each L_φ-space S and $E^S \subset \varphi^b$ for each A_φ-space S.
Definition 3.3. For a K-space E containing φ we put

$$E_{SK} := \{ x \in E \mid \forall f \in E' : (u_f x) \in S \text{ and } f(x) = s(u_f x) \}. \quad (3.4)$$

E is called an SK-space if $E = E_{SK}$.

Remark 3.4. (a) If E is a K-space containing φ, then $E_{SK} \subset \varphi$ in E.

(b) $(E, \tau(E, E^S))$ is an SK-space for each sequence space E with $E \supset \varphi$.

The latter remark is an immediate consequence of the following result which will be useful in the sequel: Let E be a sequence space containing φ and F be a K-space with $E \subset F$. If the inclusion map $i : (E, \tau(E, E^S)) \to F$ is continuous, then $E \subset F_{SK}$.

Remark 3.5. (a) In the particular case of (3.2) and (3.3) the SK-property is identical with SAK and $USAK$, respectively.

(b) Clearly, if E is an SK-space, then E is an AD-space and $E^\ell \subset E^S$. Conversely, if (A) or (B) holds, then $E^\ell \subset E^S$ forces E to be an SK-space. Indeed, in the latter situation $s \circ \text{diag}_{u_f} \in E'$ and the equation $f = s \circ \text{diag}_{u_f}$ extends from φ to E.

4. The solid topology. A sequence space E is solid provided that $y x \in E$ whenever $y \in m$ and $x \in E$. In this situation $x \in E$ if and only if $|x| := (|x_k|) \in E$.

Motivated by Große-Erdmann [12] we introduce some notation.

Notation 4.1. Under the assumption that S is solid for a K-space E containing φ we put

$$E_{SC} := \{ x \in E \mid \forall p \in \mathcal{P}_E : u_p x \in S \text{ and } p(x) \leq s(u_p |x|) \}, \quad (4.1)$$

where \mathcal{P}_E denotes the family of all continuous semi-norms on E. If $E = E_{SC}$, then E is called an SC-space.

In the particular case of (3.3) we get (cf. [12, page 502])

$$E_{SC} = AC_E := \left\{ x \in E \mid \forall p \in \mathcal{P}_E : \sum_k p(x_k e^k) < \infty \right\}. \quad (4.2)$$

We assume throughout this section that S is solid and the sum $s \in S'$ is a positive functional, that is,

$$s(z) \geq 0 \quad \text{for each } z \in S \text{ with } \quad z_k \geq 0 \ (k \in \mathbb{N}). \quad (4.3)$$

An important example for this situation is given in (3.3). We are going to present a further one.

Example 4.2. Let $T = (t_{nk})$ be a normal Sp_1-matrix such that $t_{nk} \geq 0 \ (n, k \in \mathbb{N})$. We put

$$S := \left\{ z \in m_T \mid \|z\|_{[T]} := \sup_n \sum_k t_{nk} |z_k| < \infty \right\}. \quad (4.4)$$
As we may easily check, \((S, \| \cdot \|_{\{T\}})\) is a solid BK-space (containing \(\varphi\)). Now, we will show that there exists a positive sum \(s\) on \(S\).

First of all, we note that \((m, \| \cdot \|_{\infty}, \geq)\) and \((m_T, \| \cdot \|_T, \geq_T)\) with \(\| \cdot \|_T := \| \cdot \| \circ T\) are equivalent as ordered normed spaces, where \(z \geq 0\) is defined by \(z_k \geq 0\) \((k \in \mathbb{N})\) and \(z \geq_T 0\) by \(Tz \geq 0\). Since \(e := (1, 1, \ldots)\) is an interior point of the positive cone \(K := \{z \in m \mid z \geq 0\}\) in \((m, \| \cdot \|_{\infty})\), we get that \(T^{-1}e\) is an interior point of the positive cone \(K_T := \{z \in m_T \mid z \geq_T 0\}\) in \((m_T, \| \cdot \|_T)\). By a result of Krein (cf. [22, Theorem XIII.2.3]), each positive functional \(g \in (c_T, \| \cdot \|_T)'\) can be extended to a positive continuous linear functional on \((m_T, \| \cdot \|_T)\). In particular, there exists an \(\tilde{s} \in \langle m_T, \| \cdot \|_T \rangle'\) such that

\[
\tilde{s} \mid_{c_T} = \lim_{T} T, \quad \tilde{s}(z) \geq 0 \quad (z \in K_T).
\]

Then \(s := \tilde{s} \mid_S \in \langle S, \| \cdot \|_{\{T\}} \rangle'\) and \(s(z) \geq 0\) for all \(z \in S \cap K_T\). Because of \(K \subset K_T\) we have (4.3), and \(s\) is a sum since \(T\) is an \(S_{1}\)-matrix.

Definition 4.3. (a) Let \(E\) be a sequence space and \(G\) a subspace of \(E^S\) containing \(\varphi\). The locally convex topology \(\nu(E, G)\) on \(E\) generated by the semi-norms \(p_{\{y\}}(y \in G)\) with

\[
p_{\{y\}}(x) := s(|yx|) \quad (x \in E)
\]

is called the **solid topology** corresponding to the dual pair \((E, G)\).

(b) Note that \(\nu(E, G)\) is the topology \(\tau_S\) of uniform convergence on the solid hulls of \(y \in G\), that is, \(\nu(E, G) = \tau_S\) with \(\mathfrak{S} := \{s(y) \mid y \in G\}\) and \(\mathfrak{S_0} := \{v \in m \mid |u_k| \leq |y_k| \quad (k \in \mathbb{N})\}\). In fact, it is not difficult to verify that \(p_{\{y\}}(x) = \sup \{s(vx) \mid v \in \mathfrak{S_0}\}\). Therefore, \((E, \nu(E, G))' = |G|\) (the solid span of \(G\)).

(c) A \(K\)-space \((E, \tau_E)\) is called simple if each \(\tau_E\)-bounded subset \(D\) of \(E\) is dominated by an \(x \in E\), that is, \(D \subset \text{sol}\{x\}\).

Proposition 4.4. Let \(E\) be a sequence space containing \(\varphi\).

(a) The solid topology \(\nu(E, E^S)\) is compatible with \((E, E^S)\), that is, \((E, \nu(E, E^S))' = E^S\).

(b) \((E, \nu(E, E^S))\) is an SK-space.

(c) \((E, \nu(E, E^S))_{SC}\) is an SC-space.

Proof. The statement (a) follows from Remark 4.3(b) and the fact that \(E^S\) is solid. Obviously, by Remark 3.4(b) we get that (a) implies (b).

(c) Let \(p\) be a continuous semi-norm on \((E, \nu(E, E^S))\), then \(p(x) = \sup_{y \in \mathfrak{S}} s(yx)\) for each \(x \in E\), where \(V := \{y \in E \mid p(y) \leq 1\}^+\) (polar in \(E^S\)). There exists \(v \in E^S\) such that \(p(x) \leq p(v_x)\) for all \(x \in E\), hence \(p(e_k) \leq |v_k| \quad (k \in \mathbb{N})\). Since \(E^S\) is solid and \(v \in E^S\), then \(u_p = (p(e_k)) \in E^S\). Furthermore, \(p(e_k) = \sup_{y \in \mathfrak{S}} |y_k| \quad (k \in \mathbb{N})\) and \(s(yx) \leq s(|yx|) \leq s(u_p, x)\) for every \(y \in V\), that is, \(p(x) \leq s(u_p, x)\) for each \(x \in E\).

The following proposition is in the particular case of (3.3) a result due to Große-Erdmann (cf. [12, Theorem 3.2] and the erratum in [13]).

Proposition 4.5. Let \(E\) be a solid sequence space containing \(\varphi\) and \(G\) be a sequence space with \(\varphi \subset G \subset E^S\). Then the following statements are equivalent:

(a) \((E, \sigma(E, G))\) is simple.
(b) \((G, \nu(G, E))\) is barrelled.
If in addition \(G\) is solid, then (a), thus (b), is equivalent to
(c) \((E, \nu(E, G))\) is simple.

\textbf{Proof.} (a)⇒(b). If \((E, \sigma(E, G))\) is simple, then for each \(\sigma(E, G)\)-bounded subset \(B\) of \(E\) there exists \(y \in E\) such that \(B \subset \text{sol} \{y\}\). Thus \(\beta(G, E) \subset \nu(G, E)\), which is equivalent to the barrelledness of \((G, \nu(G, E))\).

(b)⇒(a). Suppose \(B\) is \(\sigma(E, G)\)-bounded subset of \(E\). Then the semi-norm \(p\) defined by
\[
p(y) := \sup_{x \in B} |s(\nu y x)| \quad (y \in G)
\]
is continuous on \((G, \beta(G, E))\), which forces \(\beta(G, E) = \nu(G, E)\) by (b). Hence \(p(y) = \sup_{x \in \text{sol} \{v\}} |s(\nu y x)| \quad (y \in G)\) for a suitable \(v \in E\). Putting \(y := e^k\) \((k \in \mathbb{N})\) we get \(\sup_{x \in B} |x_k| = p(e^k) \leq \sup_{x \in \text{sol} \{v\}} |x_k| = |v_k| \quad (k \in \mathbb{N})\). Thus, \(B\) is dominated by \(v\).

If \(G\) is solid, then \(\nu(E, G)\)- and \(\sigma(E, G)\)-boundedness of subsets of \(E\) are obviously equivalent, thus “(a)⇒(c)” holds.

\(\square\)

5. \textbf{Quasi-matrix maps.} Aiming the extension of some well-known inclusion theorems due to Bennett and Kalton, we consider in the sequel the so-called quasi-matrix maps.

\textbf{Definition 5.1.} Let \(S\) be a \(K\)-space with a sum \(s \in S'\) and let \(A = (a_{nk})\) be an infinite matrix and \(a^{(n)}\) its \(n\)th row. Then the linear map
\[
A : E \to \omega, \quad x \mapsto Ax := (s(a^{(n)}x))_n,
\]
where \(E\) is a linear subspace of the sequence space \(\omega_A := \bigcap_{n=1}^{\infty} \{a^{(n)}\}^S\), is called \textit{quasi-matrix map}. Moreover, for every sequence space \(F\) the sequence space
\[
F_A := \{x \in \omega_A \mid Ax \in F\}
\]
is called a \textit{domain of} \(A\) \textit{relative to} \(F\) and \(c_A\) is called the \textit{domain} of \(A\); if \(x \in c_A\), we put
\[
\lim_A x := \lim_n s(a^{(n)}x).
\]

Note, \(Ax = Ax\) if the matrix \(A\) is row-finite.

First of all we give sufficient conditions for the continuity of quasi-matrix maps.

\textbf{Theorem 5.2.} Let \(E\) and \(F\) be \(K\)-spaces. Each of the following conditions implies the continuity of each quasi-matrix map \(A : E \to F\):

(A\') \(S\) and \(F\) are \(L_{\varphi}\)-spaces, \(E\) is a Mackey space, and \((E, \sigma(E', E))\) is sequentially complete.

(B\') \(S\) and \(F\) are \(A_{\varphi}\)-spaces and \(E\) is barrelled.

\textbf{Proof.} Let \(A : E \to F\) be a quasi-matrix map defined by (5.1). We put \(\Delta_A := \{f \in F' \mid f \circ A \in E'\}\) and show \(\Delta_A = F'\); then \(A\) is weakly continuous, hence continuous since \(E\) carries the Mackey topology \(\tau(E, E')\). First of all we note \(\varphi \subset \Delta_A\). Indeed, if \(w = (w_1, \ldots, w_{n_0}, 0, \ldots) \in \varphi\) and \(f(y) := \sum_{n=1}^{\infty} w_n y_n\) \((y \in F)\), then we get
\[
f \circ A(x) = \sum_{n=1}^{n_0} w_n s(a^{(n)}x) = \sum_{n=1}^{n_0} s(w_n a^{(n)}x) = s(vx), \quad x \in E,
\]
where \(v := w_1 a^{(1)} + \cdots + w_{n_0} a^{(n_0)} \in E^S\). Thus \(f \circ A \in E'\) by Proposition 3.1.
The case (A'). Since \((E', \sigma(E', E))\) is sequentially complete, then \(\overline{\Delta X} \cap F' = \Delta X\). Therefore, the fact that \(F\) is an \(L_{\psi}\)-space implies \(F' = \overline{\varphi'} \cap F' \subseteq \overline{\Delta X} \cap F' = \Delta X\).

The case (B'). The barrelledness of \(E\) implies \(\overline{\Delta X} \cap F' = \Delta X\). Since \(F\) is an \(A_{\psi}\)-space, we have \(F' = \overline{\varphi'} \cap F' \subseteq \overline{\Delta X} \cap F' = \Delta X\). \(\square\)

Now, we are going to define a \(K\)-topology on the domain \(E_{\Lambda}\), where \(E\) is a \(K\)-space topologized by a family \(\mathcal{P}\) of semi-norms and \(\Lambda\) is a quasi-matrix map defined by (5.1).

The set \(Q_n := \{ r_n \mid k \in \mathbb{N} \} \cup \{ q \circ \text{diag}(a) \mid q \in \mathbb{Z} \}\) of semi-norms generates a \(K\)-topology on \(\{a^{(n)}\}^S\) \((n \in \mathbb{N})\). If \(S\) is an \(L_{\psi}\)- or \(A_{\psi}\)-space, then the \(K\)-space \(\{a^{(n)}\}^S\) enjoys the same property. Clearly, the family \(Q := \bigcup_{n \in \mathbb{N}} Q_n\) generates a \(K\)-topology \(\tau_{\omega_{\Lambda}}\) on \(\omega_{\Lambda}\).

By the following lemma, the \(L_{\psi}\)- and \(A_{\psi}\)-property of the \(K\)-space \(S\) implies the same property on \((\omega_{\Lambda}, \tau_{\omega_{\Lambda}})\).

Lemma 5.3. Let \(S\) be an \(L_{\psi}\)-space (or \((A_{\psi}\)-space) and let \(\{F_{\alpha} \mid \alpha \in \mathcal{A}\}\) be a family of \(L_{\psi}\)-spaces (or \((A_{\psi}\)-spaces). Then \(\mathcal{R} := \bigcup_{\alpha \in \mathcal{A}} \mathcal{R}_{\alpha}\), where \(\mathcal{R}_{\alpha}\) is a family of semi-norms on \(F_{\alpha}\) \((\alpha \in \mathcal{A})\) generating the topology of \(F_{\alpha}\), generates an \(L_{\psi}\)-topology (or \((A_{\psi}\)-topology) on \(F := \bigcap_{\alpha \in \mathcal{A}} F_{\alpha}\).

Proof. First assume that \(S\) and \(F_{\alpha}\) \((\alpha \in \mathcal{A})\) are \(L_{\psi}\)-spaces and \((E, \tau_E)\) is a Mackey \(K\)-space such that \((E', \sigma(E', E))\) is sequentially complete. Moreover, let \(A : E \to F\) be a matrix map. Because of Theorem 2.1(a) the map \(A : E \to F_{\alpha}\) is continuous for each \(\alpha \in \mathcal{A}\). This implies the continuity of \(A : E \to F\). By Theorem 2.1(a), \(F\) is an \(L_{\psi}\)-space.

For the case of \((A_{\psi}\)-spaces we use Theorem 2.1(b). \(\square\)

Proposition 5.4. If \(E\) and \(S\) are \(L_{\psi}\)-spaces (or \((A_{\psi}\)-spaces), then \((E_{\Lambda}, \tau_{E_{\Lambda}})\) topologized by the family \(Q \cup \{ p \circ \Lambda \mid p \in \mathcal{P}\}\) of semi-norms is also an \(L_{\psi}\)-space (or \((A_{\psi}\)-space).

Proof. Obviously, \(E_{\Lambda}\) is a \(K\)-space. First of all we verify that \((E_{\Lambda}, \tau_{E_{\Lambda}})\) is an \(L_{\psi}\)-space: if \(E\) and \(S\) are \(L_{\psi}\)-spaces, then \(\omega_{\Lambda}\) is also an \(L_{\psi}\)-space. By Theorem 5.2, the maps

\[i_{\omega} : (E_{\Lambda}, \tau(E_{\Lambda}, \overline{\varphi})) \to \omega_{\Lambda}, \quad x \mapsto x, \quad \Lambda : (E_{\Lambda}, \tau(E_{\Lambda}, \overline{\varphi})) \to E, \quad x \mapsto \Lambda x, \quad (5.4) \]

are continuous. This implies the continuity of the identity map \(i : (E_{\Lambda}, \tau(E_{\Lambda}, \overline{\varphi})) \to (E_{\Lambda}, \tau_{E_{\Lambda}})\). Since \((E, \tau(E, \overline{\varphi}))\) is an \(L_{\psi}\)-space we get that \((E_{\Lambda}, \tau_{E_{\Lambda}})\) is an \(L_{\psi}\)-space too.

For the case of \((A_{\psi}\)-spaces we use the fact that \((E_{\Lambda}, \tau(E_{\Lambda}, \overline{\varphi})\) is an \(A_{\psi}\)-space. \(\square\)

Remark 5.5. If \(E\) is a separable \(FK\)-space and \(S\) is a separable \(BK\)-space, then \((E_{\Lambda}, \tau_{E_{\Lambda}})\) is a separable \(FK\)-space. The proof of this fact is similar to the one of [1, Theorem 1].

By Proposition 5.4, the domain \(c_{\Lambda}\) of a quasi-matrix map \(\Lambda\) is an \(L_{\psi}\)- or \(A_{\psi}\)-space if \(S\) has the same property. If \(a_k := \lim_{n} a_{nk}\) exists, then \(\varphi \subset c_{\Lambda}\), and we put \(a := (a_k)\) and define

\[\Lambda_{\Lambda}^{S} := \{ x \in c_{\Lambda} \mid ax \in S \text{ and } \lim_{n} x = s(ax) \}. \quad (5.5) \]

Note, because of \(\lim_{n} x \in c_{\Lambda}^{*}\), we have \((c_{\Lambda})^{N} \subseteq \Lambda_{\Lambda}^{S}\).
6. Inclusion theorems of Bennett-Kalton type. In this section, we extend well-known inclusion theorems of Bennett and Kalton [3, Theorems 4 and 5] (cf. also authors’ results [5, Theorem 4.4] and [6, Theorem 5.1]) to the situation considered above. We extend moreover a theorem due to Große-Erdmann (cf. [12]) which is of the same type as the mentioned theorems of Bennett and Kalton. There are no new ideas in the proofs, however for the sake of completeness we give them in a brief form.

Theorem 6.1. Let S be an L_{φ}-space. For any sequence space E containing φ the following statements are equivalent:

(a) $(E, \sigma(E^S, E))$ is sequentially complete.

(b) Each quasi-matrix map $A : (E, \tau(E, E^S)) \to F$ is continuous when F is an L_{φ}-space.

(c) The inclusion map $i : (E, \tau(E, E^S)) \to F$ is continuous whenever F is an L_{φ}-space containing E.

(d) The implication $E \subset F \Rightarrow E \subset F_{SK}$ holds whenever F is an L_{φ}-space.

(e) The implication $E \subset c_{\mathcal{A}} \Rightarrow E \subset \Lambda^S_{A^\perp}$ holds for every quasi-matrix map \mathcal{A}.

Proof. (a)\Rightarrow(b) is an immediate consequence of Theorem 5.2(A'), (b)\Rightarrow(c) is obviously valid whereas (c)\Rightarrow(d) follows from Remark 3.4(b). Furthermore, "(d)\Rightarrow(e)" is true since $c_{\mathcal{A}}$ is an L_{φ}-space and $(c_{\mathcal{A}})_{SK} \subset \Lambda^S_{A^\perp}$.

(e)\Rightarrow(a). If $(a^{(n)})$ is a Cauchy sequence in $(E^S, \sigma(E^S, E))$, then $E \subset c_{A}$, where the quasi-matrix map \mathcal{A} is defined by the matrix A with $a^{(n)}$ as nth row. On account of (e) we get $E \subset \Lambda^S_{A^\perp}$, thus $a \in E^S$ and $a^{(n)} \to a(\sigma(E^S, E))$.

Theorem 6.2. Let S be an A_{φ}-space. For any sequence space E containing φ the following statements are equivalent:

(a) $(E, \tau(E, E^S))$ is barrelled.

(b) Each quasi-matrix map $A : (E, \tau(E, E^S)) \to F$ is continuous when F is an A_{φ}-space.

(c) The inclusion map $i : (E, \tau(E, E^S)) \to F$ is continuous whenever F is an A_{φ}-space containing E.

(d) The implication $E \subset F \Rightarrow E \subset F_{SK}$ holds whenever F is an A_{φ}-space.

(e) The implication $E \subset m_{\mathcal{A}} \Rightarrow E \subset \Lambda^S_{A^\perp}$ holds for every quasi-matrix map \mathcal{A} with $\varphi \subset c_{\mathcal{A}}$.

(f) Every $\sigma(E^S, E)$-bounded subset of E^S is relatively sequentially $\sigma(E^S, E)$-compact.

Proof. (a)\Rightarrow(b) is an immediate consequence of Theorem 5.2(B'), (b)\Rightarrow(c) is obviously valid. (c)\Rightarrow(d) follows from Remark 3.4(b). (d)\Rightarrow(e) is true, since $m_{\mathcal{A}}$ is an A_{φ}-space (cf. Proposition 5.4) and $(m_{\mathcal{A}})_{SK} = (c_{\mathcal{A}})_{SK} \subset \Lambda^S_{A^\perp}$.

(e)\Rightarrow(f). Let B be a $\sigma(E^S, E)$-bounded subset of E^S and let $(b^{(n)})$ be a sequence in B. Obviously, $(b^{(n)})$ is bounded in (ω, τ_{ω}), thus we may choose a coordinatewise convergent subsequence $(a^{(n)})$ of $(b^{(n)})$. Because of the $\sigma(E^S, E)$-boundedness of $(a^{(n)} \mid n \in \mathbb{N})$ we get $E \subset m_{\mathcal{A}}$, where \mathcal{A} is the quasi-matrix map defined by the matrix $A = (a_k^{(n)})_{n,k}$. Applying (e) we obtain $E \subset \Lambda^S_{A^\perp}$, thus $a \in E^S$ and $a^{(n)} \to a(\sigma(E^S, E))$. Hence B is relatively sequentially compact in $(E^S, \sigma(E^S, E))$.

(f)\Rightarrow(a). Using the fact that in the K-space $(E^S, \sigma(E^S, E))$ each relatively sequentially compact subset is relatively compact too (cf. [14, Theorem 3.11, page 61]), (f) tells us that $(E, \tau(E, E^S))$ is barrelled.

\qed
Motivated by Große-Erdmann [12, Theorem 4.1], we prove next an inclusion theorem which gives a connection between the barrelledness of \((E, \nu(E, E^S))\) and the implication \(E \subset F \Rightarrow E \subset F_{SC}\) where \(F\) is an \(A_\varphi\)-space.

Theorem 6.3. Let \(S\) be a solid \(A_\varphi\)-space with a positive sum \(s \in S'\). Let \(E\) be any sequence space containing \(\varphi\). The following statements are equivalent:

(a) \((E, \nu(E, E^S))\) is barrelled.

(b) \((E^S, \sigma(E^S, E))\) is simple.

(c) Each quasi-matrix map \(A : (E, \nu(E, E^S)) \to F\) is continuous when \(F\) is an \(A_\varphi\)-space.

(d) The inclusion map \(i : (E, \nu(E, E^S)) \to F\) is continuous whenever \(F\) is an \(A_\varphi\)-space containing \(E\).

(e) The implication \(E \subset F \Rightarrow E \subset F_{SC}\) holds whenever \(F\) is an \(A_\varphi\)-space.

Proof. (a) \(\Leftrightarrow\) (b) is a part of Proposition 4.5, (a) \(\Rightarrow\) (c) is an immediate consequence of Theorem 5.2 \((B')\), (c) \(\Rightarrow\) (d) is obviously true, and (d) \(\Rightarrow\) (e) follows from Proposition 4.4(c).

(d) \(\Rightarrow\) (a). First of all we remark that \((E, \nu(E, E^S))\) is separable as an \(SK\)-space. Thus, we have to show that it is \(\omega\)-barrelled, that is, that every countable \(\sigma(E^S, E)\)-bounded subset \(\{a^{(n)}_k\mid n \in \mathbb{N}\}\) of \(E^S\) is \(\nu(E, E^S)\)-equicontinuous (cf. [14, page 27, Theorem 10.2]).

For a proof of this we consider the quasi-matrix map \(A\) defined by the matrix \(A = (a^{(n)}_{k})_{n,k}\). Then \(E \subset m_\lambda\) since \(A\) is \(\sigma(E^S, E)\)-bounded, and \((m_\lambda, \tau_\lambda)\) is an \(A_\varphi\)-space because of Proposition 5.4. Hence \(i : (E, \nu(E, E^S)) \to (m, \parallel \cdot \parallel_\infty)\) is continuous. Furthermore, the quasi-matrix map \(A : (m_\lambda, \tau_{m_\lambda}) \to (m, \parallel \cdot \parallel_\infty)\) is also continuous. Thus there exists \(v \in E^S\) such that \(\|A x\|_\infty = \sup_n |s(a^{(n)} x)| \leq p|v| (x)\) for each \(x \in E\). Consequently, the equicontinuity of \(\{a^{(n)}\mid n \in \mathbb{N}\}\) is proved.

7. Applications. In this section, we deal with applications of our general inclusion theorems to the case of certain dual pairs \((E, E^S)\). In various situations we discuss connections between weak sequential completeness and barrelledness on one hand and certain modifications of weak sectional convergence on the other hand.

Case 7.1 \((S = c_T\) and \(S = cs)\). Let \(T = (t_{nk})\) be a fixed row-finite \(S_{p_1}\)-matrix and

\[
S := c_T \quad \text{as well as} \quad \lim_T s(z) := z \quad (z \in c_T).
\]

Clearly, \(S\) endowed with its (separable) \(FK\)-topology is an \(L_\varphi\)- and \(A_\varphi\)-space. We have (cf. [8, 15])

\[
E^S = E^{\beta(T)} := \left\{ y \in \omega \mid \forall x \in E : \lim_n \sum_k t_{nk} y_k x_k \text{ exists} \right\}
\]

for each sequence space \(E\) and

\[
E_{SK} = E_{STK} := \left\{ x \in E \mid \forall f \in E' : f(x) = \lim_n \sum_k t_{nk} x_k f(\epsilon_k) \right\}
\]

(weak \(T\)-sectional convergence) if \(E\) is a \(K\)-space containing \(\varphi\).
Aiming a characterization of quasi-matrix maps in this context we need the following concept (cf. [7]): let \(\mathcal{V} \) be a double sequence space, that is a linear subspace of the linear space \(\Omega \) of all double sequences \(y = (y_{nr}) \), and let \(\mathcal{A} = (A^{(r)}) \) be a sequence of infinite matrices \(A^{(r)} = (a_{nk}^{(r)})_{n,k} \). We put
\[
\Omega_{\mathcal{A}} := \bigcap_r \omega_{A^{(r)}}, \quad \mathcal{V}_{\mathcal{A}} := \left\{ x \in \Omega_{\mathcal{A}} \mid \mathcal{A}x := \left(\sum_{k} a_{nk}^{(r)} x_k \right)_{nr} \in \mathcal{V} \right\}.
\] (7.4)

If there exists a limit functional on \(\mathcal{V} \), say \(\mathcal{V}^-\text{-lim} \), then the summability method induced by \(\mathcal{V}_{\mathcal{A}} \) and the limit functional
\[
\mathcal{V}^-\text{-lim}_{\mathcal{A}} : \mathcal{V}_{\mathcal{A}} \to \mathbb{K}, \quad x \mapsto \mathcal{V}^-\text{-lim}_{\mathcal{A}} x,
\] (7.5)
is called a \(\mathcal{V}^-\text{-SM} \)-method. For example, this definition contains as a special case the \(\mathcal{C}_c^-\text{-SM} \)-methods considered by Przybylski [16] where
\[
\mathcal{C}_c := \left\{ y = (y_{nr})_{n,r} \in \Omega : \lim_{r} \lim_{n} y_{nr} = \text{exists} \right\}.
\] (7.6)

Furthermore, if \(\mathcal{A} = (A^{(r)}) \) is any sequence of matrices, then \(\mathcal{C}_{m,\mathcal{A}} := \{ x \in \Omega_{\mathcal{A}} \mid \mathcal{A}x \in \mathcal{C}_m \} \) is an FK-space and \(\mathcal{C}_{c,\mathcal{A}} \) is a closed separable subspace of \(\mathcal{C}_{m,\mathcal{A}} \).

The introduced notation enables us to describe quasi-matrix maps in the situation of (7.1): if \(A = (a_{nk}) \) is any matrix, then the domain \(\mathcal{C}_{c,A} \) of the corresponding quasi-matrix map \(\mathcal{A} \) is precisely the domain \(\mathcal{C}_{c,\mathcal{A}} \) of the \(\mathcal{C}_c^-\text{-SM} \)-method \(\mathcal{A} = (A^{(r)}) \) with \(A^{(r)} := (t_{nk} a_{rk})_{n,k} \) (\(r \in \mathbb{N} \)). Thus \(m_{\mathcal{A}} = \mathcal{C}_{m,\mathcal{A}} \) is an \(L_{\varphi}^- \)-space and \(c_{\mathcal{A}} = \mathcal{C}_{c,\mathcal{A}} \) is an \(L_{\varphi}^- \)- and \(A_{\varphi}^- \)-space (where we consider them as FK-spaces).

As consequences of the main Theorems 6.1 and 6.2 we get the following inclusion theorems in the situation of the dual pair \((E, E^{\beta(T)}) \).

Theorem 7.2. For any sequence space \(E \) with \(\varphi \subset E \) the following statements are equivalent:
(a) \((E^{\beta(T)}, \sigma(E^{\beta(T)}, E)) \) is sequentially complete.
(b) The implication \(E \subset F \Rightarrow E \subset F_{\text{STK}} \) holds whenever \(F \) is an \(L_{\varphi}^- \)-space.
(c) The implication \(E \subset \mathcal{C}_{c,\mathcal{A}} \Rightarrow E \subset (\mathcal{C}_{c,\mathcal{A}})_{\text{STK}} \) holds for each sequence \(\mathcal{A} \) of matrices.

Theorem 7.3. For any sequence space \(E \) with \(\varphi \subset E \) the following statements are equivalent:
(a) \((E, \tau(E, E^{\beta(T)})) \) is barrelled.
(b) The implication \(E \subset F \Rightarrow E \subset F_{\text{STK}} \) holds whenever \(F \) is an \(A_{\varphi}^- \)-space.
(c) The implication \(E \subset \mathcal{C}_{m,\mathcal{A}} \Rightarrow E \subset (\mathcal{C}_{m,\mathcal{A}})_{\text{STK}} \) holds for each sequence \(\mathcal{A} \) of matrices satisfying \(\varphi \subset \mathcal{C}_{m,\mathcal{A}} \).

Note, in the particular case of \(T := \Sigma \) (summation matrix) we get the well-known inclusion theorems of Bennett and Kalton [3, Theorems 4 and 5] in a generalized version due to the authors (cf. [5, Theorem 4.4] and [6, Theorem 5.1]).
Case 7.4 \((S = b v T)\). Let \(T = (t_{nk})\) be a fixed row-finite \(S_p^\ast\)-matrix and
\[
S := b v T \quad \text{as well as} \quad s(z) := \lim_{n \in \mathbb{N}} \sum_k (t_{nk} - t_{n-1,k})z_k = \lim_{T} z \quad (z \in b v T).
\] (7.8)

Then \(S\) equipped with its (separable) \(FK\)-topology is an \(L_{\varphi}\)- and \(A_{\varphi}\)-space. We have (cf. [10, 11])
\[
E^S = E^{\alpha(T)} := \left\{ y \in \omega \mid \sum_n \left| \sum_k (t_{nk} - t_{n-1,k})y_kx_k \right| < \infty \right\} \quad \text{(7.9)}
\]
for any sequence space \(E\). Moreover, if \(E\) is a \(K\)-space containing \(\varphi\), then we obtain
\[
E_{SK} = E_{USTK} := \left\{ x \in E \mid \forall f \in E^\prime : \sum_n \left| \sum_k (t_{nk} - t_{n-1,k})x_kf(e^k) \right| < \infty, \quad f(x) = \lim_n \sum_k t_{nk}x_kf(e^k) \right\}
\] (7.10)
(cf. [11, Theorem 3.1]).

For a description of quasi-matrix maps in the situation of (7.8) we introduce the double sequence spaces
\[
\mathbb{B}v_m := \left\{ (y_{nr}) \mid \forall r \in \mathbb{N} : (y_{nr})_n \in b v \text{ and } \left(\lim_n y_{nr} \right)_r \in m \right\},
\]
\[
\mathbb{B}v_c := \left\{ (y_{nr}) \mid \forall r \in \mathbb{N} : (y_{nr})_n \in b v \text{ and } \left(\lim_n y_{nr} \right)_r \in c \right\},
\]
(7.11)
and the limit functional \(\mathbb{B}v_c\)-\(\lim : \mathbb{B}v_c \rightarrow \mathbb{K}, \ (y_{nr}) \rightarrow \lim_r \lim_n y_{nr}\). It is a standard exercise to prove that \(\mathbb{B}v_m_{d}\) is an \(FK\)-space for each sequence \(d = (A(r))\) of matrices and that \(\mathbb{B}v_{c_{d}}\) is a closed separable subspace of \(\mathbb{B}v_{m_{d}}\).

For a matrix \(A = (a_{nk})\) the corresponding quasi-matrix map \(\mathcal{A}\) in the context of (7.8) is the \(\mathbb{B}v_{c_{d}}\)-SM-method \(d = (A(r))\) with \(A(r) := (t_{nk}a_{rk})_{nk} \ (r \in \mathbb{N})\). Thus \(m_A = \mathbb{B}v_{m_{d}}\) and \(c_A = \mathbb{B}v_{c_{d}}\).

Applying the main Theorems 6.1 and 6.2 to the situation of (7.8), we get the following inclusion theorems.

Theorem 7.5. For any sequence space \(E\) with \(\varphi \subset E\) the following statements are equivalent:

(a) \((E^{\alpha(T)}, \sigma(E^{\alpha(T)}, E))\) is sequentially complete.

(b) The implication \(E \subset F \Rightarrow E \subset F_{USTK}\) holds whenever \(F\) is an \(L_{\varphi}\)-space.

(c) The implication \(E \subset (\mathbb{B}v_{c_{d}})_{USTK}\) holds for each sequence \(d\) of matrices.

Theorem 7.6. For any sequence space \(E\) with \(\varphi \subset E\) the following statements are equivalent:

(a) \((E, \tau(E, E^{\alpha(T)}))\) is barrelled.

(b) The implication \(E \subset F \Rightarrow E \subset F_{USTK}\) holds whenever \(F\) is an \(A_{\varphi}\)-space.

(c) The implication \(E \subset (\mathbb{B}v_{m_{d}})_{USTK}\) holds for each sequence \(d\) of matrices satisfying \(\varphi \subset \mathbb{B}v_{c_{d}}\).
Case 7.7 ($S = \ell$). We consider the case of (3.3). Clearly, this is a particular case of (7.8) with $T = \Sigma$. Then $E^S = E^\alpha$ and $E_{SK} = E_{USAK}$ (cf. [18, 19]). A quasi-matrix map induced by a matrix $A = (a_{nk})$ is in this situation a matrix map $y_n = \sum_k a_{nk}x_k$ ($n \in \mathbb{N}$) with the application domain $\omega_{|A|} := \{x \in \omega \mid \forall n \in \mathbb{N} : \sum_k |a_{nk}x_k| < \infty\}$. We now put $m_{|A|} := m_A \cap \omega_{|A|}$, $c_{|A|} := c_A \cap \omega_{|A|}$ and $\Lambda_{|A|}^n := \{x \in c_{|A|} \mid \sum_k |a_kx_k| < \infty \text{ and } \lim_k x = \sum_k a_kx_k\}$ (here we assume $\varphi \subset c_A$). From Theorems 6.1 and 6.2 we get the following inclusion theorems.

Theorem 7.8. For any sequence space E with $\varphi \subset E$ the following statements are equivalent:

(a) $(E^\alpha, \sigma(E^\alpha, E))$ is sequentially complete.

(b) Every matrix map

$$A : (E, \tau(E, E^\alpha)) \to F \quad \text{with } E \subset \omega_{|A|}$$

(7.12)

is continuous whenever F is an L_φ-space.

(c) The implication $E \subset F \Rightarrow E \subset F_{USAK}$ holds whenever F is an L_φ-space.

(d) The implication $E \subset c_{|A|} \Rightarrow E \subset \Lambda_{|A|}^\omega$ holds for each matrix A.

Note that Bennett [2] proved, that $(E^\alpha, \sigma(E^\alpha, E))$ is sequentially complete if E is a monotone sequence space, and that Swartz and Stuart [21, Theorem 5] (see also [20, Theorem 7]) gave a more general class of sequence spaces having that property.

Theorem 7.9. For any sequence space E with $\varphi \subset E$ the following statements are equivalent:

(a) $(E, \tau(E, E^\alpha))$ is barrelled.

(b) Any matrix map according to (7.12) is continuous when F is an A_φ-space.

(c) The implication $E \subset F \Rightarrow E \subset F_{USAK}$ holds whenever F is an A_φ-space.

(d) The implication $E \subset m_{|A|} \Rightarrow E \subset \Lambda_{|A|}^\omega$ holds for each matrix A satisfying $\varphi \subset c_A$.

Case 7.10 ($S = [cs]$). Let

$$S := [cs] := \left\{z \in cs \mid \lim_j \sum_{2^j} |z_k| = 0\right\}, \quad s(z) := \sum_k z_k \quad (z \in [cs]),$$

(7.13)

where $\sum_{2^j} a_k := \sum_{k=2^j-1}^{2^j} a_k$ (cf. [9]). It is known that $[cs]$ is an AK-BK-space with the norm $\|z\| := \sup_n |\sum_k z_k| + \sup_j \sum_{2^j} |z_k| \quad (z \in [cs])$ (cf. [9, Theorem 4.5]). Thus, $[cs]$ is an L_{φ}- and A_φ-space. For a sequence space E we set $E^{[\beta]} := E^[cs] = \{y \in E^\beta \mid \lim_j \sum_{2^j} |y_kx_k| = 0\}$. If E is a K-space containing φ, we get

$$E_{SK} = \left\{x \in E \mid \forall f \in E' : (u_f x) \in [cs] \text{ and } f(x) = \sum_k x_kf(e_k)\right\}$$

(7.14)

$$= (E')^{[\beta]} \cap E_{USAK}.$$

The quasi-matrix map $A : \omega_A \to \omega$ corresponding to a matrix $A = (a_{nk})$ is precisely the matrix map $A : \omega_{|A|} \to \omega$ with

$$\omega_{|A|} := \left\{x \in \omega_A \mid \forall n \in \mathbb{N} : \lim \sum_{2^j} |a_{nk}x_k| = 0\right\} = \omega_A.$$
We put $m_{[A]} := m_A \cap \omega_{[A]}$, $c_{[A]} := c_A \cap \omega_{[A]}$ and, assuming $\varphi \subset c_A$,

$$\Lambda^+_{[A]} := \left\{ x \in c_{[A]} \mid ax \in [cs] \text{ and } \lim_{A} x = \sum_{k} a_k x_k \right\},$$

(7.16)

From Theorems 6.1 and 6.2 we obtain the following inclusion theorems in the context of (7.13).

Theorem 7.11. For any sequence space E with $\varphi \subset E$ the following statements are equivalent:

(a) $(E^{[\beta]}, \sigma (E^{[\beta]}, E))$ is sequentially complete.
(b) Each matrix map

$$A : (E, \tau(E, E^{[\beta]})) \to F \quad \text{with} \quad E \subset \omega_{[A]}$$

(7.17)

is continuous whenever F is an L_φ-space.
(c) The implication $E \subset F \Rightarrow E \subset (F^{f})^{[\beta]} \cap F_{SAK}$ holds whenever F is an L_φ-space.
(d) The implication $E \subset c_{[A]} \Rightarrow E \subset \Lambda^+_{[A]}$ holds for each matrix A.

Theorem 7.12. For any sequence space E with $\varphi \subset E$ the following statements are equivalent:

(a) $(E, \tau(E, E^{[\beta]}))$ is barrelled.
(b) Each matrix map according to (7.17) is continuous when F is an A_φ-space.
(c) The implication $E \subset F \Rightarrow E \subset (F^{f})^{[\beta]} \cap F_{SAK}$ holds whenever F is an A_φ-space.
(d) The implication $E \subset m_{[A]} \Rightarrow E \subset \Lambda^+_{[A]}$ holds for each matrix A.

Acknowledgement. The work presented here was supported by Deutscher Akademischer Austauschdienst (DAAD) and Estonian Science Foundation Grant 3991.

References

Johann Boos: Fachbereich Mathematik, FernUniversität Hagen, D-58084 Hagen, Germany

E-mail address: johann.boos@fernuni-hagen.de

Toivo Leiger: Puhta Matemaatika Instituut, Tartu Ülikool, EE 50090 Tartu, Estonia

E-mail address: leiger@math.ut.ee
Mathematical Problems in Engineering

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br