ON THE NUMBER OF ZEROS OF ITERATED OPERATORS
ON ANALYTIC LEGENDRE EXPANSIONS

CARL PRATHER

(Received 10 September 2000)

ABSTRACT. Let \(L = (1 - z^2)D^2 - 2zD, \) \(D = d/dz \) and \(f(z) = \sum_{n=0}^\infty c_n P_n(z) \), with \(P_n \) being the \(n \)th Legendre polynomial and \(f \) analytic in an ellipse with foci \(\pm 1 \). Set \(L^k = L(L^{k-1}) \), \(k \geq 2 \). Then the number of zeros of \(L^k f(z) \) in this ellipse is \(O(k \ln k) \).

2000 Mathematics Subject Classification. 30D10, 30D15.

1. Introduction. In [3], Erdős and Rényi showed that for a function analytic in \(|z| \leq R \), the number of zeros of the \(k \)th derivative \(f^{(k)}(z) \) in \(|z| \leq r < R \) is \(O(k) \). This result includes an earlier result of Pólya [8] that for a function that is real on the real axis and is the restriction to a closed interval \(I \) of an analytic function, the number of zeros of \(f^{(k)} \) in \(I \) is \(O(k) \).

Let

\[L = (1 - z^2)D^2 - 2zD, \]

(1.1)

with \(D = d/dz \). Let \(f(z) \) be analytic in an ellipse \(E_R \) with foci at \(\pm 1 \), where the sum of the semiaxes is \(R > 1 \). Now, \(f(z) \) can be represented as

\[f(z) = \sum_{n=0}^\infty c_n P_n(z), \]

(1.2)

where \(P_n \) is the \(n \)th Legendre polynomial [17, Theorem 9.1.1]. Moreover, by [17, formula (9.1.4)]

\[\liminf_{n \to \infty} (|c_n|^{-1/n}) = R. \]

(1.3)

Calculation shows that

\[(L^k f)(z) = \sum_{n=0}^\infty (-\lambda_n)^k c_n P_n(z), \]

(1.4)

where \(\lambda_n = n(n + 1) \). Formula (1.4) holds for \(x \in (-1, 1) \) and hence in \(E_R \) by analytic continuation. Moreover,

\[\liminf_{n \to \infty} (|\lambda_n^k c_n|^{-1/n}) = R \]

(1.5)

for every positive integer \(k \) so that \((L^k f)(z) \) is also analytic in \(E_R \).
2. The main theorem and lemmas

Theorem 2.1. Let \(f \) be analytic in \(E_R \) of the form (1.2). Let \(1 < T < R \). Then the number of zeros of \((L^k f)(z) \) in \(E_T \) is \(O(k \ln k) \).

The above theorem implies our next result. For the next corollary we consider the operator \(L \) to be restricted to the real axis. That is,

\[
L = (1 - x^2)D^2 - 2xD
\]

with

\[
D = \frac{d}{dx}.
\]

Corollary 2.2. Let \(L \) be given by (2.1) and (2.2), and let \(f \) be analytic in \(E_R \) of the form (1.2), with real \(c_n \). Then the number of sign changes of \((L^k f)(x) \) in \((-1, 1)\) is \(O(k \ln k) \).

We next give the lemmas needed. The first is a version of Jensen’s formula for functions analytic in an ellipse [7, page 58].

Lemma 2.3. Let \(f(z) \) be analytic inside the ellipse \(z = (Sei\theta + (Sei\theta)^{-1})/2 \), for \(R > S > 1 \). For \(1 < r \leq S \), denote by \(N(r) \) the number of zeros of \(f \) (counting multiplicities) inside and on the ellipse

\[
z = \frac{1}{2}(re^{i\theta} + (re^{i\theta})^{-1}).
\]

Then

\[
\int_1^S \frac{1}{r} N(r)dr = \frac{1}{2\pi} \int_0^{2\pi} \ln |f(\frac{1}{2}(Sei\theta + (Sei\theta)^{-1}))| d\theta - \frac{1}{2\pi} \int_0^{2\pi} \ln |f(\cos \theta)| d\theta.
\]

We also need Laplace’s method [9, Part 2, Chapter 5, no. 201] and [1, Section 5.1].

Lemma 2.4. Suppose that the functions \(\phi(x) \) and \(\exp(h(x)) \) are defined and satisfy the following conditions on \((0, \infty)\):

1. \(\phi(x) \exp(kh(x)) \) is absolutely integrable over \((0, \infty)\) for every \(k = 0, 1, 2, \ldots \).
2. The function \(h(x) \) attains its maximum only at the point \(x_0 \in (0, \infty) \). Moreover, \(h(x) < h(x_0) \) on any closed integral that does not contain the point \(x_0 \). Furthermore, there is a neighborhood of \(x_0 \) where \(h''(x) \) exists and is continuous with \(h''(x_0) < 0 \).
3. \(\phi(x) \) is continuous at \(x_0 \), \(\phi(x_0) \neq 0 \).

Then

\[
\int_0^\infty \phi(x) \exp(kh(x)) dx \sim \sqrt{2\pi} \phi(x_0) \exp(kh(x_0))(-kh''(x_0))^{-1/2}
\]

as \(k \to \infty \).
ON THE NUMBER OF ZEROS OF ITERATED OPERATORS ...

We also need an expansion for Legendre polynomials [2, Lemma 12.4.1].

Lemma 2.5. Given P_n,

$$P_n\left(\frac{(Re^{i\theta} + (Re^{i\theta})^{-1})}{2}\right) = \sum_{j=0}^{n} a_j a_{n-j} (Re^{i\theta})^{n-2j},$$

where

$$a_j = 2^{-2j} \binom{2j}{j}.$$

3. Proof of the main theorem

Proof. We will use Jensen’s formula in the form (3.15). Let $1 < S < R$ and $z = (Se^{i\theta} + (Se^{i\theta})^{-1})/2$. By (1.3), for a fixed ϵ, $0 < \epsilon < R - S$, there exists $N = N(\epsilon)$ such that $n \geq N$ implies that

$$|c_n| \leq (R - \epsilon)^{-n}.$$

(3.1)

Now,

$$(L_k f)(z) = \sum_{n=0}^{\infty} \lambda_n^k c_n P_n(z)$$

(3.2)

which, by Lemma 2.5, equals

$$\sum_{n=0}^{\infty} \frac{\lambda_n^k}{4^n} \sum_{j=0}^{n} \binom{2j}{j} \binom{2n-2j}{n-j} (Se^{i\theta})^{n-2j}.$$

(3.3)

Taking the modulus,

$$|(L_k f)(z)| \leq \sum_{n=0}^{\infty} \lambda_n^k |c_n| \left(\frac{S}{4}\right)^n \sum_{j=0}^{n} \binom{2j}{j} \binom{2n-2j}{n-j} S^{-2j}.$$

(3.4)

We now employ an identity that is a special case of the Chu-Vandermonde sum, which is

$$\sum_{j=0}^{n} \binom{2j}{j} \binom{2n-2j}{n-j} = 4^n.$$

(3.5)

Since $S > 1$,

$$|(L_k f)(z)| \leq \sum_{n=0}^{\infty} \lambda_n^k |c_n| S^n,$$

(3.6)

which, by (3.1) and $R > S$, is less than or equal to

$$\sum_{n=0}^{N-1} \lambda_n^k |c_n| S^n + \sum_{n=N}^{\infty} \lambda_n^k \left(\frac{S}{R - \epsilon}\right)^n.$$

(3.7)
The second term in (3.7) is less than
\[
\int_0^\infty (n(n+1))^k \exp \left(-n \ln \frac{R-\epsilon}{S} \right) dn
\]
\[
= \int_0^\infty \exp \left(k (\ln (n(n+1)) - \frac{n}{k} \ln \frac{R-\epsilon}{S}) \right) dn.
\]
(3.8)

In (3.8), \(n \) is considered a continuous variable.

Next we employ Laplace's method as in Lemma 2.4. We set
\[
h(n) = \ln \left(n(n+1) - \frac{n}{k} \ln \frac{R-\epsilon}{S} \right),
\]
(3.9)
with \(n \in (0, \infty) \).

Calculation shows that
\[\frac{h'(n_0)}{n_0} = 0\]
where
\[n_0 = \left(\frac{2k}{\ln ((R-\epsilon)/S)} \right) - 1 + \left(\frac{1 + 4k^2}{\ln ((R-\epsilon)/S)} \right)^{1/2}.\]
(3.10)

Now, for all sufficiently large \(k \), the term \(n_0 \) is positive. Note also that
\[n_0 \sim \alpha k \text{ as } k \to \infty,\]
(3.11)
where the constant \(\alpha \) is independent of \(k \).

Further calculation shows that
\[h''(n_0) = -2 \frac{\lambda n_0 + 1}{\lambda n_0} < 0,\]
(3.12)
with \(\lambda_n \) given by \(h(n+1) \).

By Lemma 2.4, the integral in (3.8) is asymptotic to
\[(\lambda_{n_0})^k \left(\frac{S}{R-\epsilon} \right)^{n_0} \left(\frac{\pi (\lambda_{n_0})^2}{k(\lambda_{n_0}+1)} \right)^{1/2} \text{ as } k \to \infty.\]
(3.13)

The first term in (3.7) is
\[
\sum_{n=0}^{N-1} \lambda_n^k |c_n| S^n \leq c(N-1)(\lambda_{N-1})^{k} \left(\sum_{n=0}^{N-1} S^n \right) = c(N-1)(\lambda_{N-1})^{k} \frac{S^{N-1}}{S-1},
\]
(3.14)
where \(c = \max(|c_j|) \), for \(j = 0, \ldots, N-1 \).

We next take \(1 < T < S \). We use Jensen's formula in (2.4) with \(f \) replaced by \(L^k f \).
This yields
\[
N(T) \ln \frac{S}{T} \leq \int_T^S \frac{1}{r} N(r) dr
\]
\[
\leq \frac{1}{2\pi} \int_0^{2\pi} \ln \left| (L^k f) \left(\frac{1}{2} (Se^{i\theta} + (Se^{i\theta})^{-1}) \right) \right| d\theta
\]
\[
- \frac{1}{2\pi} \int_0^{2\pi} \ln \left| (L^k f)(\cos \theta) \right| d\theta.
\]
(3.15)
We first use the estimates in (3.6), (3.7), (3.13), and (3.14) to estimate the first integral on the right-hand side of inequality (3.15). In light of these estimates, we choose a constant $M > 1$ independent of k such that for all sufficiently large k,

$$\frac{1}{2\pi} \int_0^{2\pi} \ln \left| (L^k f) \left(\frac{1}{2} (Se^{i\theta} + (Se^{i\theta})^{-1}) \right) \right| d\theta$$

$$\leq \ln \left\{ Mc(N-1) (\lambda_{N-1})^k \left(\frac{S}{S-1} \right)^{n_0} \left(\frac{\pi (\lambda_{n_0})^2}{k (\lambda_{n_0} + 1)} \right)^{1/2} \right\}. \quad (3.16)$$

By (3.11), for all sufficiently large k,

$$n_0 > N - 1. \quad (3.17)$$

Accordingly, rewrite the term on the right-hand side of (3.16) as

$$\ln \left\{ k^{1/2} (\lambda_{n_0})^k \left[M \left(\frac{S}{R-\epsilon} \right)^{n_0} \left(\frac{\pi (\lambda_{n_0})^2}{k^2 (\lambda_{n_0} + 1)} \right)^{1/2} + k^{-1/2} Mc(N-1) \left(\frac{\lambda_{N-1}}{\lambda_{n_0}} \right)^k \left(\frac{S}{S-1} \right)^{n_0} \right] \right\}. \quad (3.18)$$

Now, for the first term inside the bracket in (3.18), by (3.11) this term is $O(1)$ as $k \to \infty$. Next, by (3.17),

$$\left(\frac{\lambda_{N-1}}{\lambda_{n_0}} \right)^k = O(1) \quad \text{as } k \to \infty. \quad (3.19)$$

In summary, by (1.4), (3.11), (3.16), (3.18), and (3.19), the integral in (3.16) that appears in (3.15) as well is $O(k \ln k)$.

Finally, we estimate the second integral on the right-hand side of (3.15). This is, of course, the case $S = 1$ in the integral just estimated. So, we fix ϵ, with

$$0 < \epsilon < R - 1 \quad (3.20)$$

which is possible as $R > 1$. Inequality (3.20) is equivalent to $1/(R-\epsilon) < 1$. First, we replace the estimate in (3.14) by

$$\sum_{n=0}^{N-1} (\lambda_n)^k |c_n| \leq c(N-1) (\lambda_{N-1})^k, \quad (3.21)$$

where, again, $c = \max \{|c_j|\}$ for $j = 0, \ldots, N-1$.

We first note that Jensen’s formula as used in (3.15) is independent of the estimates done in (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.16), (3.17), and (3.18). Next, set $z = \alpha = \cos \theta = (e^{i\theta} + e^{-i\theta})/2$. The estimates in (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.16), (3.17), and (3.18) are replaced by

$$\frac{1}{2\pi} \int_0^{2\pi} \ln \left| (L^k f) (\cos \theta) \right| d\theta$$

$$\leq \ln \left[k^{1/2} (\lambda_{n_0})^k \left[M \left(\frac{1}{R-\epsilon} \right)^{n_0} \left(\frac{\pi \lambda_{n_0}^2}{k^2 (\lambda_{n_0} + 1)} \right)^{1/2} + k^{-1/2} Mc(N-1) \left(\frac{\lambda_{N-1}}{\lambda_{n_0}} \right)^k \right] \right], \quad (3.22)$$
this inequality holds for all sufficiently large k. Again, by (3.11), the first term inside the bracket in (3.22) is $O(1)$ as $k \to \infty$. Then, because of (3.11) and (3.19), the integral in (3.22) is $O(k \ln k)$.

In summary, by Jensen’s formula as in (3.15), $N(T)$, which equals the number of zeros of $(L^k f)(z)$ in E_T, satisfies

$$N(T) = O(k \ln k). \quad (3.23)$$

4. Commentary. The order of growth $O(k \ln k)$ that appears in the conclusions of Theorem 2.1 and Corollary 2.2 is due to the method of the proof used. The inspiration for this method was corresponding methods used by Erdös and Rényi [3]. The correct order of growth, namely $O(k)$, should be possible to obtain in the conclusion of this theorem and corollary.

In this paper, we have assumed a function to be analytic in an ellipse with foci at ± 1 and obtained asymptotic bounds on the number of zeros of $L^k f(z)$ in this ellipse, which in particular bounds the number of sign changes of $(L^k f)(x)$ in $(-1,1)$. The definition of L appears in the introduction.

Much work has been done in various contexts addressing the converse of the problem posed here. That is, one assumes for a real function that is C^∞ on a real interval I an asymptotic bound on the number of sign changes of $(L^k f)(x)$ in I, where L is the appropriate differential operator. One then deduces extendability by analytic continuation of the function to be analytic, or even to be an entire function, or even entire of a certain growth, depending on the frequency of sign changes of $(L^k f)(x)$ in I. Work on problems of this type can be found in [4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16].

References

CARL PRATHER: DEPARTMENT OF MATHEMATICS, VIRGINIA TECH, BLACKSBURG, VA 24061-0123, USA

E-mail address: cprather@vt.edu
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be