A weak form of weak quasi-continuity, which we call subweak quasi-continuity, is introduced. It is shown that subweak quasi-continuity is strictly weaker than weak quasi-continuity. Subweak quasi-continuity is used to strengthen several results in the literature concerning weak quasi-continuity. Specifically, results concerning the graph, graph function, and restriction of a weakly quasi-continuous function are extended slightly. Also, a result concerning weakly quasi-continuous retractions is strengthened.

2000 Mathematics Subject Classification: 54C10.

1. Introduction. Weakly quasi-continuous functions were introduced by Popa and Stan [9]. Recently, weak quasi-continuity has been developed further by Noiri [5, 6] and Park and Ha [8]. Due to a result by Noiri [5], weak quasi-continuity is equivalent to the weak semicontinuity developed by Arya and Bhamini [1]. The purpose of this note is to introduce the concept of subweak quasi-continuity, which we define in terms of a base for the topology on the codomain. We establish that this condition is strictly weaker than weak quasi-continuity and we use it to strengthen some of the results in the literature concerning weak quasi-continuity. For example, we show that the graph of a subweakly quasi-continuous function with a Hausdorff codomain is semiclosed. We also show that, if the graph function is subweakly quasi-continuous with respect to the usual base for the product space, then the function itself is weakly quasi-continuous, and that, if a function is subweakly quasi-continuous with respect to the base \mathcal{B}, then the restriction to a preopen set is subweakly quasi-continuous with respect to the same base. These results strengthen slightly the comparable results for weakly quasi-continuous functions. Finally, we extend a result concerning weakly quasi-continuous retractions and investigate some of the basic properties of subweakly quasi-continuous functions.

2. Preliminaries. The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated. All sets are considered to be subsets of topological spaces. The closure and interior of a set A are signified by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. A set A is semiopen (preopen, α-open) provided that $A \subseteq \text{Cl}(\text{Int}(A))$ ($A \subseteq \text{Int}(\text{Cl}(A))$, $A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))$). A set is semiclosed (preclosed, α-closed) provided that its complement is semiopen (preopen, α-open). The collection of all semiopen sets in a space X is denoted by $\text{SO}(X)$ and the collection of all semiclosed sets in X containing a fixed point x is denoted by $\text{SO}(X,x)$. The intersection of all semiclosed sets containing a set A is called the semiclosure of A and denoted by $\text{sCl}(A)$. The
semi-interior of a set A, denoted by $\text{sInt}(A)$, is the union of all semiopen sets contained in A. The preclosure of A, denoted by $\text{pCl}(A)$, is the intersection of all preclosed sets containing A. Finally, if an operator is used with respect to a proper subspace, a subscript is added to the operator. Otherwise, it is assumed that the operator refers to the entire space.

Definition 2.1 (Popa and Stan [9]). A function $f : X \rightarrow Y$ is said to be weakly quasi-continuous if for every $x \in X$, every open set U in X containing x, and every open set V in Y containing $f(x)$, there exists a nonempty open set W in X such that $W \subseteq U$ and $f(W) \subseteq \text{Cl}(V)$.

Definition 2.2 (Arya and Bhamini [1]). A function $f : X \rightarrow Y$ is said to be weakly semicontinuous if for every $x \in X$ and every open set V in Y containing $f(x)$, there exists $U \in \text{SO}(X,x)$ for which $f(U) \subseteq \text{Cl}(V)$.

The following result by Noiri [5] shows that weak quasi-continuity and weak semicontinuity are equivalent.

Theorem 2.3 (Noiri [5, Theorem 4.1]). A function $f : X \rightarrow Y$ is weakly quasi-continuous if and only if for every $x \in X$ and every open set V containing $f(x)$, there exists $U \in \text{SO}(X,x)$ for which $f(U) \subseteq \text{Cl}(V)$.

Definition 2.4. A function $f : X \rightarrow Y$ is said to be subweakly continuous (Rose [10]) (subalmost weakly continuous (Baker [2])) if there is an open base \mathcal{B} for the topology on Y such that $\text{sCl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$ for every $V \in \mathcal{B}$.

3. **Subweakly quasi-continuous functions.** The following characterization of weak quasi-continuity is due to Noiri [5].

Theorem 3.1 (Noiri [5, Theorem 4.3(d)]). A function $f : X \rightarrow Y$ is weakly quasi-continuous if and only if $\text{sCl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$ for every open set V in Y.

We define a function $f : X \rightarrow Y$ to be subweakly quasi-continuous provided that there is an open base \mathcal{B} for the topology on Y for which $\text{sCl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$ for every $V \in \mathcal{B}$. Obviously, weak quasi-continuity implies subweak quasi-continuity. The following example shows that these concepts are not equivalent.

Example 3.2. Let $X = \mathbb{R}$ have the usual topology and $Y = X$ have the discrete topology. The identity mapping $f : X \rightarrow Y$ is subweakly quasi-continuous with respect to the base consisting of the singleton sets in Y. However, f is not weakly quasi-continuous because for $V = (0,1) \cup (1,2)$, $\text{sCl}(f^{-1}(V)) \not\subseteq f^{-1}(\text{Cl}(V))$.

Since $\text{sCl}(A) = A \cup \text{Int}(\text{Cl}(A))$ for every set A, we have the following characterization of subweak quasi-continuity.

Theorem 3.3. A function $f : X \rightarrow Y$ is subweakly quasi-continuous if and only if there is an open base \mathcal{B} for the topology on Y for which $\text{Int}(\text{Cl}(f^{-1}(V))) \subseteq f^{-1}(\text{Cl}(V))$ for every $V \in \mathcal{B}$.
Since $s\text{Cl}(A) \subseteq \text{Cl}(A)$ for every set A, obviously, subweak continuity implies subweak quasi-continuity. The following example shows that the converse implication does not hold.

Example 3.4. Let $X = [1/2, 3/2]$ have the usual relative topology, $Y = \{0, 1\}$ have the discrete topology, and let $f : X \to Y$ be the greatest integer function. Kar and Battacharya [3] showed that f is weakly quasi-continuous (their term is weakly semicontinuous) but not weakly continuous. Obviously, the function f is also not subweakly continuous.

The following two examples establish that subweak quasi-continuity is independent of subalmost weak continuity.

Example 3.5. Let X be an indiscrete space with at least two elements and let $Y = X$ have the discrete topology. Since $p\text{Cl}(\{x\}) = \{x\}$ for every $x \in X$, the identity mapping $f : X \to Y$ is subalmost weakly continuous with respect to the base consisting of the singleton sets in Y. However, since singleton sets in X are dense, f is not subweakly quasi-continuous.

Example 3.6. Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $Y = X$ have the discrete topology. Let $f : X \to Y$ be the identity mapping. The function f is not subalmost weakly continuous, since any base for Y must include $V = \{a\}$ and $p\text{Cl}(f^{-1}(V)) \notin f^{-1}(\text{Cl}(V))$. However, f is subweakly quasi-continuous with respect to the base of singleton subsets of Y.

4. Graph related properties. Recall that the graph of a function $f : X \to Y$ is the subspace $G(f) = \{(x, f(x)) : x \in X\}$ of the product space $X \times Y$.

Park and Ha [8] proved that the graph of a weakly quasi-continuous function with a Hausdorff codomain is semiclosed. We show that weak quasi-continuity can be replaced by subweak quasi-continuity.

Theorem 4.1. If $f : X \to Y$ is subweakly quasi-continuous and Y is Hausdorff, then the graph of f, $G(f)$, is semiclosed.

Proof. Let \mathcal{B} be an open base for Y such that $s\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$ for every $V \in \mathcal{B}$. Let $(x, y) \in X \times Y - G(f)$. Since $y \neq f(x)$, there exists disjoint open sets V and W with $f(x) \in W$, $y \in V$, and $V \in \mathcal{B}$. Then $x \notin f^{-1}(\text{Cl}(V))$, and, since $s\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$, $x \notin s\text{Cl}(f^{-1}(V))$. Therefore $(x, y) \in (X - s\text{Cl}(f^{-1}(V))) \times V \subseteq X \times Y - G(f)$. Since $s\text{Cl}(f^{-1}(V))$ is semiclosed, $X - s\text{Cl}(f^{-1}(V))$ is semiopen. Since finite products of semiopen sets are semiopen, $(X - s\text{Cl}(f^{-1}(V))) \times V$ is semiopen. Finally, since unions of semiopen sets are semiopen, it follows that $X \times Y - G(f)$ is semiopen and that $G(f)$ is semiclosed.

Corollary 4.2 (Park and Ha [8, Corollary 4.2]). If $f : X \to Y$ is weakly quasi-continuous and Y is Hausdorff, then the graph of f, $G(f)$, is semiclosed.

By the graph function of a function $f : X \to Y$ we mean the function $g : X \to X \times Y$ given by $g(x) = (x, f(x))$ for every $x \in X$.

ON A WEAK FORM OF WEAK QUASI-CONTINUITY 383

Theorem 4.3. Let \(f : (X, \tau) \to (Y, \sigma) \) be a function and let \(\mathcal{B} \) be an open base for \(\sigma \). Let \(\mathcal{C} = \{ U \times V : U \in \tau, V \in \mathcal{B} \} \). The function \(f \) is subweakly quasi-continuous with respect to the base \(\mathcal{B} \) if and only if the graph function of \(f, g : X \to X \times Y \), is subweakly quasi-continuous with respect to the base \(\mathcal{C} \).

Proof. Assume that \(f : (X, \tau) \to (Y, \sigma) \) is subweakly quasi-continuous with respect to the base \(\mathcal{B} \) for \(\sigma \). Let \(U \times V \in \mathcal{C} \), where \(U \in \tau \) and \(V \in \mathcal{B} \). Then
\[
\text{scCl}(f^{-1}(U \times V)) = \text{scCl}(U \cap f^{-1}(V)) \subseteq \text{Cl}(U) \cap \text{scCl}(f^{-1}(V)) \subseteq \text{Cl}(U) \cap f^{-1}(\text{Cl}(V)) = g^{-1}(\text{Cl}(U) \times \text{Cl}(V)) = g^{-1}(\text{Cl}(U \times V)).
\]
Therefore, \(f \) is subweakly quasi-continuous with respect to the base \(\mathcal{B} \).

In Theorem 4.3, if we take \(\mathcal{B} \) to be \(\sigma \), the topology on \(Y \), then we have the following result.

Corollary 4.4. If the graph function \(g : X \to X \times Y \) of a function \(f \) is subweakly quasi-continuous with respect to the usual base for the product space, then the function \(f \) is weakly quasi-continuous.

Corollary 4.5 (Noiri [5, The “only if” part of Theorem 6.3.4]). If the graph function \(g : X \to X \times Y \) of a function \(f \) is weakly quasi-continuous, then the function \(f \) is weakly quasi-continuous.

5. Additional properties

Definition 5.1 (Kar and Bhattacharya [4]). A space \(X \) is said to be semi-\(T_1 \) provided that for every pair of distinct points \(x \) and \(y \) in \(X \) there exist sets \(U \in \text{SO}(X, x) \) and \(V \in \text{SO}(X, y) \) such that \(y \notin U \) and \(x \notin V \).

Theorem 5.2. If \(Y \) is Hausdorff and \(f : X \to Y \) is a subweakly quasi-continuous injection, then \(X \) is semi-\(T_1 \).

Proof. Let \(x_1 \) and \(x_2 \) be distinct points in \(X \) and let \(\mathcal{B} \) be an open base for \(Y \) such that \(\text{scCl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V)) \) for every \(V \in \mathcal{B} \). Since \(Y \) is Hausdorff and \(f(x_1) \neq f(x_2) \), there exist disjoint open sets \(U \) and \(V \) in \(Y \) with \(f(x_1) \in U \) and \(f(x_2) \in V \), and \(V \in \mathcal{B} \). Then, since \(f(x_1) \notin \text{Cl}(V) \), we have \(x_1 \in X - f^{-1}(\text{Cl}(V)) \subseteq X - \text{scCl}(f^{-1}(V)) \) which is semiopen and does not contain \(x_2 \). Therefore \(X \) is semi-\(T_1 \).

The function in Example 3.6 is a subweakly quasi-continuous injection with a Hausdorff codomain and a non-\(T_1 \)-domain. Therefore, the conclusion that \(X \) is semi-\(T_1 \) in Theorem 5.2 cannot be strengthened to \(T_1 \).

Since the restriction of the function \(f \) in Example 3.6 to the set \(A = \{ a, c \} \) is not subweakly quasi-continuous, we see that the restriction of a subweakly quasi-continuous function can fail to be subweakly quasi-continuous. Noiri [5] proved that the restriction of weakly quasi-continuous function to an open set is weakly quasi-continuous and Arya and Bhamini [1] extended this result to \(\alpha \)-open sets. Finally, Park and Ha [8]
extended the result further to preopen sets. In what follows, we establish the analogous result for subweakly quasi-continuous functions.

Theorem 5.3. If \(f : X \to Y \) is subweakly quasi-continuous with respect to the base \(\mathcal{B} \) for \(Y \) and \(A \) is a preopen set in \(X \), then \(f|_A : A \to Y \) is subweakly quasi-continuous with respect to the base \(\mathcal{B} \).

Proof. Let \(V \in \mathcal{B} \), then using (Noiri [7, Lemma 3.3]) we see that \(s\text{Cl}_A(f|_A^{-1}(V)) = A \cap s\text{Cl}(f|_A^{-1}(V)) = A \cap \text{Cl}(f^{-1}(V) \cap A) \subseteq A \cap \text{Cl}(f^{-1}(V)) \subseteq A \cap f^{-1}(\text{Cl}(V)) = f|_A^{-1}(\text{Cl}(V)) \). Therefore, \(f|_A : A \to Y \) is subweakly quasi-continuous with respect to the base \(\mathcal{B} \).

In Theorem 5.3, if we let \(\mathcal{B} \) be the topology, then we have the following result.

Corollary 5.4 (Park and Ha [8, Theorem 3.8]). If \(f : X \to Y \) is weakly quasi-continuous and \(A \) is a preopen set in \(X \), then \(f|_A : A \to Y \) is weakly quasi-continuous.

Theorem 5.5. If \(f : X \to Y \) is subweakly quasi-continuous and \(A \) is an open set in \(Y \) containing \(f(X) \), then \(f : X \to A \) is subweakly quasi-continuous.

Proof. Let \(\mathcal{B} \) be an open base for \(Y \) for which \(s\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V)) \) for every \(V \in \mathcal{B} \). Then \(\mathcal{C} = \{ V \cap A : V \in \mathcal{B} \} \) is an open base for the relative topology on \(A \). Let \(V \cap A \in \mathcal{C} \), where \(V \in \mathcal{B} \). Then \(s\text{Cl}(f^{-1}(V \cap A)) = s\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V)) \subseteq f^{-1}(\text{Cl}(V) \cap A) \). The proof is completed by establishing that \(\text{Cl}(V) \cap A \subseteq \text{Cl}_A(V \cap A) \).

Let \(y \in \text{Cl}(V) \cap A \) and let \(W \subseteq A \) be open in \(A \) with \(y \in W \). Since \(A \) is open in \(Y \), \(W \) is open in \(Y \). Because \(y \in \text{Cl}(V) \), \(W \cap V \neq \emptyset \). Therefore \(W \cap (V \cap A) \neq \emptyset \), which proves that \(y \in \text{Cl}_A(V \cap A) \). Thus \(\text{Cl}(V) \cap A \subseteq \text{Cl}_A(V \cap A) \).

Now, it follows that \(f : X \to A \) is subweakly quasi-continuous.

Park and Ha [8] defined a function \(f : X \to A \), where \(A \subseteq X \), to be a weakly quasi-continuous retraction provided that \(f \) is weakly quasi-continuous and \(f|_A \) is the identity on \(A \). It is then proved (Park and Ha [8, Theorem 3.15]) that, if \(f : X \to A \) is a weakly quasi-continuous retraction and \(X \) is Hausdorff, then \(A \) is semiclosed in \(X \). We prove the following comparable result for subweakly quasi-continuous functions.

Theorem 5.6. Let \(A \subseteq X \) and let \(f : X \to X \) be a subweakly quasi-continuous function such that \(f(X) = A \) and \(f|_A \) is the identity on \(A \). If \(X \) is Hausdorff, then \(A \) is semiclosed.

Proof. Assume \(A \) is not semiclosed. Let \(x \in \text{Cl}(A) - A \). Let \(\mathcal{B} \) be an open base for the topology on \(X \) such that \(s\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V)) \) for every \(V \in \mathcal{B} \). Since \(x \notin A \), \(f(x) \notin f(x) \). Because \(X \) is Hausdorff, there exist disjoint open sets \(V \) and \(W \) such that \(x \in V \), \(f(x) \in W \), and \(V \in \mathcal{B} \). Let \(U \in \text{SO}(X,x) \). Then \(x \in U \cap V \), which is semiopen in \(X \) (Noiri [7]). Since \(x \in \text{Cl}(A) \), \((U \cap V) \cap A \neq \emptyset \). So there exists \(y \in (U \cap V) \cap A \). Since \(y \in A \), \(f(y) = y \) and therefore \(y \in f^{-1}(V) \). Thus \(U \cap f^{-1}(V) \neq \emptyset \) and we see that \(x \in s\text{Cl}(f^{-1}(V)) \). However, \(f(x) \in W \), which is open and disjoint from \(V \). Hence \(f(x) \notin \text{Cl}(V) \) or \(x \notin f^{-1}(\text{Cl}(V)) \), which contradicts the assumption that \(f \) is subweakly quasi-continuous.

Lemma 5.7. If \(A \subseteq Y \) and \(f : X \to A \) is weakly quasi-continuous, then \(f : X \to Y \) is weakly quasi-continuous.
Proof. If V is an open set in Y, then $\text{sCl}(f^{-1}(V)) = s\text{Cl}(f^{-1}(V \cap A)) \subseteq f^{-1}((\text{Cl}_A(V \cap A)) = f^{-1}(A \cap \text{Cl}(V \cap A)) = f^{-1}(\text{Cl}(V \cap A)) \subseteq f^{-1}(\text{Cl}(V))$. \hfill \Box

Thus a weakly quasi-continuous retraction satisfies the hypothesis of Theorem 5.6 and we have the following corollary.

Corollary 5.8 (Park and Ha [8, Theorem 3.15]). If $f : X \to A$, where $A \subseteq X$, is a weakly quasi-continuous retraction and X is Hausdorff, then A is semiclosed.

Theorem 5.9. Let Y be a Hausdorff space, $f_1 : X \to Y$ continuous, and $f_2 : X \to Y$ subweakly quasi-continuous. Then $\{x \in X : f_1(x) = f_2(x)\}$ is semiclosed.

Proof. Let $A = \{x \in X : f_1(x) = f_2(x)\}$ and let $x \in X - A$. Let \mathcal{B} be an open base for the topology on Y for which $s\text{Cl}(f_2^{-1}(V)) \subseteq f_2^{-1}(\text{Cl}(V))$ for every $V \in \mathcal{B}$. Since Y is Hausdorff and $f_1(x) \neq f_2(x)$, there exist disjoint open sets V and W in Y for which $f_1(x) \in V$, $f_2(x) \in W$, and $V \cap W = \emptyset$. Since $f_2(x) \notin \text{Cl}(V)$, we have $x \in X - f_2^{-1}(\text{Cl}(V)) \subseteq X - s\text{Cl}(f_2^{-1}(V))$. Therefore $x \in f_1^{-1}(V) \cap (X - s\text{Cl}(f_2^{-1}(V))) \subseteq X - A$. Since $f_1^{-1}(V)$ is open, $X - s\text{Cl}(f_2^{-1}(V))$ is semiopen, and the intersection of an open set and a semiopen set is semiopen (Noiri [7]), we see that $X - A$ is semiopen and that A is semiclosed. \hfill \Box

Corollary 5.10. Let Y be Hausdorff, $f_1 : X \to Y$ continuous, and $f_2 : X \to Y$ subweakly quasi-continuous. If f_1 and f_2 agree on a dense subset of X, then $f_1 = f_2$.

Acknowledgment. The author gratefully acknowledges the support of Indiana University Southeast in the publication of this paper.

References

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>April 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es