REPRESENTATION OF CERTAIN CLASSES OF DISTRIBUTIVE LATTICES BY SECTIONS OF SHEAVES

U. MADDANA SWAMY and P. MANIKYAMBA
Mathematics Department
Andhra University
Waltair 530 003
INDIA

(Received March 13, 1979 and in revised form July 9, 1979)

ABSTRACT. Epstein and Horn ([6]) proved that a Post algebra is always a P-algebra and in a P-algebra, prime ideals lie in disjoint maximal chains. In this paper it is shown that a P-algebra L is a Post algebra of order \(n \geq 2 \), if the prime ideals of L lie in disjoint maximal chains each with \(n-1 \) elements. The main tool used in this paper is that every bounded distributive lattice is isomorphic with the lattice of all global sections of a sheaf of bounded distributive lattices over a Boolean space. Also some properties of P-algebras are characterized in terms of the stalks.

KEY WORDS AND PHRASES. Post Algebra, P-algebra, B-algebra, Heyting Algebra, Stone Lattice, Boolean Space, Sheaf of Distributive Lattices Over a Boolean Space, Prime Ideals Lie in Disjoint Maximal Chains, Regular Chain Base.

1980 Mathematics Subject Classification Codes: Primary 06A35, Secondary 18 F 20.
1. **Introduction.**

Epstein ([5]) proved that in a Post algebra of order \(n \geq 2 \) prime ideals lie in disjoint maximal chains each with \(n - 1 \) elements. He has also proved that if \(L \) is a finite distributive lattice and prime ideals of \(L \) lie in disjoint maximal chains each with \(n-1 \) elements, then \(L \) is a Post algebra of order \(n \). Epstein and Horn ([6]) have shown that a Post algebra is always a P-algebra and in a P-algebra prime ideals lie in disjoint maximal chains. It is the main theme of this paper that a P-algebra \(L \) is a Post algebra of order \(n \geq 2 \), if the prime ideals of \(L \) lie in disjoint maximal chains each with \(n-1 \) elements.

The main tool used in this paper is the fact that every bounded distributive lattice is isomorphic with the lattice of all global sections of a sheaf of bounded distributive lattices over a Boolean space ([15] and [9]). It is well known that a P-algebra is always a (double) Heyting algebra, a (double) L-algebra, a pseudocomplemented lattice, a Stone lattice and a normal lattice. We characterize these properties of P-algebras in detail in terms of the stalks of the corresponding sheaf. We give another characterization of Post algebras by regular chain bases.

Throughout this paper, by \(L \) we mean a (nontrivial) bounded distributive lattice \((L, \lor, \land, 0, 1)\) and \(B = B(L) \) the Boolean algebra of complemented elements of \(L \). For any \(a \in B \), we denote the complement of \(a \) by \(a' \). For any \(x, y \in L \), we denote the largest \(z \in L \) such that \(x \land z \leq y \) (if it exists) by \(x \to y \) and the largest element \(a \in B \) such that \(x \land a \leq y \) (if it exists) by \(x \Rightarrow y \). If, for every \(x, y \in L, x \to y \) (\(x \Rightarrow y \)) exists, then we say that \(L \) is a Heyting algebra (respectively B-algebra). Dually, we define \(x \supset y \) and \(x \Leftarrow y \) respectively. If in a Heyting algebra (B-algebra), \((x \to y) \lor (y \to x) = 1 \) (\((x \Rightarrow y) \lor (y \Rightarrow x) = 1 \)) for every \(x, y \in L \), then we say that \(L \) is an L-algebra.
(respectively BL-algebra). For any $x \in L$, if $x \rightarrow 0$ exists, then we say that x has the pseudocomplement and we usually write x^* for $x \rightarrow 0$. If x^* exists for each $x \in L$, then we say that L is pseudocomplemented. The dual of L is denoted by L^d. If both L and L^d are Heyting algebras (B-algebras, L-algebras, BL-algebras), then we say that L is a double Heyting algebra (respectively double B-algebra, double L-algebra, double BL-algebra). L is said to be a P-algebra if L is a BL-algebra. Epstein and Horn proved that L is a P-algebra if and only if L is a double L-algebra ([6], theorem 3.4). For the elementary properties of these types of lattices, we refer to ([2]) and ([6]).

By a sheaf of bounded distributive lattices we mean a triple (\mathcal{J}, π, X) satisfying the following:

1) \mathcal{J} and X are topological spaces
2) $\pi : \mathcal{J} \rightarrow X$ is a local homeomorphism
3) Each $\pi^{-1}(p)$, $p \in X$ is a bounded distributive lattice;
4) the maps $(x,y) \mapsto x \vee y$ and $(x,y) \mapsto x \wedge y$ from $\mathcal{J} \times \mathcal{J} = \{(x,y) \in \mathcal{J} \times \mathcal{J} / \pi(x) = \pi(y)\}$ into \mathcal{J} are continuous and
5) the maps $\hat{0} : p \mapsto 0(p)$ and $\hat{1} : p \mapsto 1(p)$ from $X \rightarrow Q$ are continuous, where $0(p)$ and $1(p)$ are the smallest and largest elements of $\pi^{-1}(p)$ respectively.

We call \mathcal{J} the sheaf space X the base space and π the projection map. We write \mathcal{J}_p for $\pi^{-1}(p)$, $p \in X$ and call \mathcal{J}_p the stalk at p. By a (global) section of the sheaf (\mathcal{J}, π, X) we mean a continuous map $\sigma : X \rightarrow \mathcal{J}$ such that $\pi \circ \sigma = \text{id}_X$.

For any sections σ and τ we write $|(\sigma, \tau)|$ for the closed set $\{p \in X | \sigma(p) \neq \tau(p)\}$ and we call $|(\sigma, 0)|$ the support of σ and write $|\sigma|$ for $|(\sigma, 0)|$. For the preliminary results on sheaf theory, we refer to the pioneering work of Hofmann ([8]).
By Spec L, we mean the (Stone) space Y of all prime ideals of L with the hull-kernel topology; i.e., the topology for which $\{Y_x | x \in L\}$ is a base, where for any $x \in L$, $Y_x = \{p \in \text{Spec } L/x \notin P \}$. Throughout this paper X denotes Spec B which is a Boolean space, i.e., a compact, Hausdorff and totally disconnected space. Since $a \mapsto X_a$ is a Boolean isomorphism of B onto the Boolean algebra of all clopen subsets of X, we identify a and X_a and write simply a for X_a. For any $p \in X$, \mathcal{J}_p be the quotient lattice L/θ_p where θ_p is the congruence on L given by

$$(x,y) \in \theta_p \iff x \wedge a = y \wedge a \text{ for some } a \in B-p,$$

and let \mathcal{S} be the disjoint union of all \mathcal{J}_p, $p \in X$. For each $x \in L$, define $\hat{x} : X \rightarrow \mathcal{S}$ by $\hat{x}(p) = \theta_p(x)$, the congruence class of θ_p containing x. Topologize \mathcal{S} with the largest topology such that each \hat{x}, $x \in L$, is continuous. Define $\pi : \mathcal{S} \rightarrow X$ by $\pi(s) = p$ if $a \in \mathcal{J}_p$. The following theorem is the main tool used in this paper and is due to Subrahmanyam ([15]) (see also [9]).

THEOREM 1.1 (\mathcal{S}, π, X) described above is a sheaf of bounded distributive lattices in which each stalk has exactly two complemented elements, viz., $0(p)$ and $1(p)$.

1.2 For any $a \in B$, $p \in X$, $\hat{a}(p) = 1(p)$ if $p \in a$ and $\hat{a}(p) = 0(p)$ if $p \notin a$.

1.3 For any $x, y \in L$ and $a \in B$, $\hat{x}/a = \hat{y}/a$ if and only if $x \wedge a = y \wedge a$.

1.4 $\hat{x} \mapsto \hat{x}$ is an isomorphism of L onto the lattice $\Gamma(x, \mathcal{S})$ of all global sections of the sheaf (\mathcal{S}, π, X). We identify \hat{x} with x and write simply x for \hat{x}.

1.5 For any prime ideal P of L, there exists a unique $p \in X$ such that $\{x(p)/x \in P\}$ is a prime ideal of \mathcal{J}_p. On the other hand if Q is a prime ideal of \mathcal{J}_p, $p \in X$, then $\{x \in L/x(p) \in Q\}$ is a prime ideal of L. This
correspondence exhibits the set of all prime ideals of L as the disjoint union of the sets of prime ideals of the stalks. Moreover, if P and Q are prime ideals of distinct stalks \mathcal{F}_P and \mathcal{F}_Q, then P and Q are incomparable, when they are regarded as prime ideals of L.

Throughout this paper, by a stalk \mathcal{F}_P, $p \in X$, we mean the stalks of the sheaf (\mathcal{F}, π, X) described above at p.

2. PSEUDOCOMPLEMENTED LATTICES.

It is well known that a bounded distributive lattice is a Heyting algebra if and only if it is relatively pseudocomplemented; i.e., each interval $[x, y]$, $x \leq y \in L$ is pseudocomplemented ([1]). Also the class of all distributive pseudocomplemented lattices and the class of all Heyting algebras are equationaly definable (see [11] and [11]), when we regard the pseudocomplementation and $(x,y) \mapsto (x + y)$ as unary and binary operations respectively in L. Thanks to the referee for suggesting a simpler proof of the following.

THEOREM 2.1. L is pseudocomplemented if and only if each stalk \mathcal{F}_P, $p \in X$ is pseudocomplemented and the pseudocomplementation $x \mapsto x^*$ is continuous and in this case, the pseudocomplement of $x(p)$ in \mathcal{F}_p is precisely $x^*(p)$ for all $x \in L$.

PROOF. Suppose L is pseudocomplemented. Then it is easily seen that for all x and p, $(x(p))^*_{\mathcal{F}_p}$ exists and is equal to $x^*(p)$. Then it is easy to show that the map $x \mapsto x^*$ is continuous. For the converse, if $x \in L$, the hypothesis implies that the map $f : x \mapsto \mathcal{J}$ defined by $f(p) = (x(p))^*$ is a global section of \mathcal{J}. Therefore, $f = \hat{y}$ for some y and it is clear that $y = x^*$.

If L is a Heyting algebra, then each θ_a, $a \in B$, is compatible with the binary operation $(x, y) \mapsto (x + y)$. For, if $a \in B$ and (x, y) and $(x_1, y_1) \in \theta$ then $(x + x_1) \land y \land a = (x + x_1) \land x \land a \leq x_1 \land a = y_1 \land a \leq y_1$, so that $(x + x_1) \land a \leq (y + y_1) \land a$. Similarly, we have $(y + y_1) \land a \leq (x + x_1) \land a$ and hence
(x + y, y + z) ∈ θ a. Hence the following theorem and its proof are analogous to the above.

THEOREM 2.2. L is a Heyting algebra if and only if each stalk ∫ₚ, p ∈ X is a Heyting algebra, and the operation (s,t) → (s → t) of ∫ Y into ∫ is continuous and in this case x(p) → y(p) in ∫ₚ, p ∈ X, is equal to (x → y)(p) for all x,y ∈ L.

3. **NORMAL LATTICES.**

DEFINITION 3.1. (Cornish [4]). L is said to be normal if any two distinct minimal prime ideals of L are comaximal and L is said to be relatively normal if each interval [x,y], x ≤ y ∈ L is normal.

For any x,y ∈ L, let (x,y)* L be the ideal {z ∈ L/ x ∧ z ≤ y} of L. For any x ∈ L, we write (x)* L for (x,0)* L. Cornish ([4]) proved that L is normal if and only if (x ∧ y)* L = (x)* L V (y)* L for all x,y ∈ L, and that L is relatively normal if and only if (x ∧ y,z)* L = (x,z)* L V (y,z)* L for all x,y,z ∈ L where V stands for the join operation in the lattice of all ideals of L.

THEOREM 3.2. (Speed [13]). A pseudocomplemented distributive lattice is normal if and only if it is a Stone lattice.

THEOREM 3.3. (Balbes and Horn [1]): A Heyting algebra is relatively normal if and only if it is an L-algebra.

THEOREM 3.4. L is normal if and only if each stalk ∫ₚ, p ∈ X, is normal.

PROOF. Suppose L is normal and p ∈ X. Let u,v ∈ ∫ₚ so that u = x(p) and v = y(p) for some x,y ∈ L. Clearly (u) ∫ₚ = (v) ∫ₚ = (u ∧ v) ∫ₚ. Let t(p) ∈ (u ∧ v)* ∩ T L. Since, (x ∧ y ∧ t)(p) = x(p) ∧ y(p) ∧ t(p) = 0(p) there exists a ∈ B-p such that x ∧ y ∧ t ∧ a = 0, so that t ∈ (x ∧ y ∧ a)* ∩ T L and hence t = t₁ V t₂ for some t₁ ∈ (x ∧ a)* ∩ T L and t₂ ∈ (y ∧ a)* ∩ T L. Now t(p) = t₁(p) V t₂(p), t₁(p) ∈ (u)* ∩ T L and t₂(p) ∈ (v)* ∩ T L. Hence ∫ₚ is normal. Conversely, suppose each stalk ∫ₚ, p ∈ X is normal. Let x,y ∈ L and
For each $p \in X$, since $z(p) \in (x(p) \land y(p))_\mathcal{P}^*$, there exists $a \in \mathcal{B}_p$, t and $s \in L$, such that $a \land z = a \land (t \lor s)$, $t \land x \land a = s \land y \land a = 0$. By the compactness of X, it follows that there exists $a_1, a_2, \ldots, a_n \in \mathcal{B}$ and $t_1, t_2, \ldots, t_n, s_1, \ldots, s_n \in L$ such that

$$
\begin{align*}
&\forall \ i \leq n \ a_i = 1, \\
&\forall \ i \leq n \ (t_i \lor s_i), \\
&\forall \ t \lor (t_i \land a_i) = 0 = s_i \land y \land a_i. \\
&\text{Now, Put } \ \ t = \lor (t_i \land a_i) \text{ and } \\
&\forall \ i \leq n \ a_i = 1, \\
&\forall \ i \leq n \ (t_i \land a_i \land x) = 0 = \lor (s_i \land a_i \land y) = s \land y. \\
&\text{Hence } (x \land y)^*_L \subseteq (x)^*_L \lor (y)^*_L
\end{align*}
$$

and the otherside inclusion is obvious. Hence L is normal.

The proof of the following theorem is analogous to that of the above.

THEOREM 3.5. L is relatively normal if and only if each stalk \mathcal{Y}_p, $p \in X$, is relatively normal.

DEFINITION 3.6. (Speed [12]). L is said to be a distributive $*$ lattice and denoted by $L \in \Delta^*$ if, for each $x \in L$, there exists $y \in L$ such that

$$(x)_L^{**} = \{u \in L \mid u \land v = 0 \text{ for every } v \in (x)^*_L\} = (y)_L^*.$$

Speed ([12]) proved that $L \in \Delta^*$ if and only if, for each $x \in L$, there exists $y \in L$, such that $x \land y = 0$ and $x \lor y$ is dense; i.e., $x \land y)^*_L = \{0\}$.

THEOREM 3.7. $L \in \Delta^*$ if and only if (i) $\mathcal{Y}_p \in \Delta^*$ for each $p \in X$ and (ii) $\{p \in X \mid x(p) \text{ is dense in } \mathcal{Y}_p\}$ is open for each $x \in L$.

PROOF. Suppose $L \in \Delta^*$ and $x \in L$. There exists $y \in L$ such that $x \land y = 0$ and $x \lor y$ is dense in L. Let $p \in X$. Clearly, $x(p) \land y(p) = 0(p)$. Also, if $z \in L$, such that $((x(p) \lor y(p)) \land z(p) = 0(p)$, then $(x \land y) \land z \land a = 0$ for some $a \in \mathcal{B}_p$ and hence $z \land a = 0$, so that $z(p) = 0(p)$. Hence $x(p) \lor y(p)$ is dense in \mathcal{Y}_p. Therefore $\mathcal{Y}_p \in \Delta^*$. Now, suppose $x(p)$ is dense in \mathcal{Y}_p. It follows that $y(p) = 0(p)$ and hence there exists $a \in \mathcal{B}_p$ such that $y \land a = 0$.

We claim that \(x(q) \) is dense in \(\mathcal{J}_q \) for all \(q \in a \). For, if \(q \in a \) and \(z(q) \in \mathcal{J}_q \), \(z \in L \), such that \(x(q) \land z(q) = 0(q) \), then there exists \(b \in B - q \) such that \(x \land z \land b = 0 \); so that \((x \lor y) \land z \land a \land b = 0 \), and hence \(z \land a \land b = 0 \) and since \(a \land b \in B - q \), \(z(q) = 0(q) \). Conversely, suppose (i) and (ii) hold and \(x \in L \).

For each \(p \in X \), by (i) and (ii), there exists \(y \in L \) and \(a \in B - p \) such that \(x \land y \land a = 0 \) and \((x \lor y)(q) \) is dense in \(\mathcal{J}_q \) for all \(q \in a \). By the usual compactness argument, there exists \(y_1, y_2, \ldots, y_n \in L \), \(a_1, \ldots, a_n \in B \) such that

\[
\bigwedge_{i=1}^{n} a_i = 1, \quad a_i \land a_j = 0 \text{ for } i \neq j, \quad x \land y_i \land a_i = 0 \quad \text{and} \quad (x \lor y_i)(p) \text{ is dense in } \mathcal{J}_p \text{ for all } p \in a_i.
\]

Now put \(y = \bigvee_{i=1}^{n} (y_i \land a_i) \). Then \(x \land y = 0 \) and \(x \lor y \) is dense in \(L \). For, \((x \lor y) \land z = 0 \) for some \(z \in L \), then, for all \(p \in a_i \),

\[
0(p) = ((x \lor y) \land z)(p) = (x(p) \lor y(p)) \land z(p) \text{ and hence } z(p) = 0(p) \text{ for all } p \in a_i \text{ and therefore } z = 0. \quad \text{Hence } L \in \Delta^*.
\]

4. **STONE LATTICES.**

For any \(p \in X \), since the stalk \(\mathcal{J}_p \) has exactly two complemented elements, \(\mathcal{J}_p \) is a Stone lattice if and only if \(\mathcal{J}_p \) is dense (i.e., if \(x(p) \not\vdash o(p) \), then \((x(p))^*_p = \{0(p)\} \)). Hence, by theorem 2.1, 3.2, and 3.4, we have the following.

THEOREM 4.1. Suppose \(L \) is pseudocomplemented. Then the following are equivalent.

(i) \(L \) is a Stone lattice

(ii) \(L \) is normal

(iii) Each stalk \(\mathcal{J}_p \), \(p \in X \), is a normal

(iv) Each stalk \(\mathcal{J}_p \), \(p \in X \), is a Stone lattice

(v) Each stalk \(\mathcal{J}_p \), \(p \in X \), is dense.

The following theorem is a consequence of theorem 2.2, 3.3 and 3.5.
THEOREM 4.2. Let L be a Heyting algebra. Then the following are equivalent.

(i) L is an L-algebra

(ii) L is relatively normal

(iii) Each stalk \bigvee_p, $p \in X$, is relatively normal

(iv) Each stalk \bigvee_p, $p \in X$, is an L-algebra.

Since L is an L-algebra if and only if it is relatively Stone lattice (Theorem 4.11 of [1]) (i.e., each interval is a Stone lattice) in view of theorem 4.1, one may suspect that if L is an L-algebra, then each stalk is relatively dense and hence a chain. This is not true (see 4.4 below), though the converse is proved in the following.

THEOREM 4.3. If L is a Heyting algebra and each stalk is a chain, then L is an L-algebra.

PROOF. If each stalk is a chain, then by theorem 1.5, the prime ideals of L lie in disjoint maximal chains and hence L is relatively normal lattice and hence the theorem follows from theorem 2.3.

EXAMPLE 4.4. Let B_4 be the 4-element Boolean algebra and A be the distributive lattice obtained by adjoining an external element to B_4 as the smallest element. Then A is an L-algebra which is not a chain (Thanks to the referee).

Epstein and Horn ([6]) proved that L is a Stone lattice if and only if L^d is pseudosupplemented and $0 \iff x \wedge y = (0 \iff x) \wedge (0 \iff y)$ for all $x, y \in L$. Now, these two necessary and sufficient conditions for L to be a Stone lattice can be viewed in terms of the stalks as follows.

THEOREM 4.5. L^d is pseudosupplemented if and only if $|x|$ is open for each $x \in L$ and in this case $|x| = 0 \iff x$ for all $x \in L$.

PROOF. Follows from Lemma 5.2.
For any \(p \in X \), let \((p) \) be the smallest ideal of \(L \) containing \(p \). The proof of the following theorem is simple.

THEOREM 4.6. For any \(p \in X \), the stalk \(\mathcal{S}_p \) is dense if and only if \((p) \) is a prime ideal of \(L \).

It can be easily seen that each stalk \(\mathcal{S}_p \), \(p \in X \), is dense if and only if \(|x \land y| = |x| \cap |y| \) for all \(x, y \in L \). Hence from theorem 4.5 and 4.6 and lemma 2.9 of (\cite{7}), we have the following.

THEOREM 4.7. \(L \) is a Stone lattice if and only if \(|x| \) is open for all \(x \in L \) and each stalk \(\mathcal{S}_p \), \(p \in X \) is dense.

REMARK 4.8. Swamy and Rama Rao (\cite{10}) proved that a lattice \(L \) is a Stone lattice if and only if \(L \) is isomorphic to the lattice of all global sections of a sheaf of dense bounded distributive lattices over a Boolean space in which each section has open support (see also \cite{9}). It can be verified, that when \(L \) is a Stone lattice, then our sheaf \((\mathcal{S}, \pi, X) \) coincides with the sheaf constructed in (\cite{10}).

5. **\(p \)-ALGEBRAS.**

The following results interpret \(B \)-algebras in sheaf theoretic terminology.

LEMMA 5.1. Let \(x, y \in L \). Then \(x \Rightarrow y \) exists in \(B \) if and only if
\[
\{ p \in X / x(p) \leq y(p) \}
\]
is closed and in this case \(x \Rightarrow y = \{ p \in X / x(p) \leq y(p) \} \).

PROOF. For any \(p \in X \), \(x(p) \leq y(p) \) if and only if there exists \(a \in B \) such that \(x \land a \leq y \). If \(x \Rightarrow y \) exists in \(B \), then, for any \(p \in X \), \(x(p) \leq y(p) \) if and only if \(p \in x \Rightarrow y \). Conversely, if \(\{ p \in X / x(p) \leq y(p) \} \) is closed, then there exists \(a \in B \) such that \(p \in a \) if and only if \(x(p) \leq y(p) \) for all \(p \in X \). Hence \(a = x \Rightarrow y \).

The proof of the following is easy.

LEMMA 5.2. For any \(x, y \in L \), \(|(x, y)| \) is open if and only if there exists a largest element \(a \) of \(B \) such that \(x \land a = y \land a \).
The following theorem is a consequence of the above lemmas.

THEOREM 5.3. The following are equivalent.

1) \(L \) is a dual \(B \)-algebra

2) For any \(x, y \in L \), \(\{ a \in B / x \vee a = y \vee a \} \) is a principal filter of \(B \).

3) For any \(x, y \in L \), \(\{ a \in B / x \wedge a = y \wedge a \} \) is a principal ideal of \(B \).

4) \(L \) is a \(B \)-algebra

5) \(\{ p \in X / x(p) \leq y(p) \} \) is closed for every \(x, y \in L \).

6) \(\big| (x, y) \big| \) is open for every \(x, y \in L \).

THEOREM 5.4. Suppose \(L \) is a \(B \)-algebra. Then the following are equivalent.

1) \(L \) is a \(P \)-algebra; i.e. \(L \) is a \(BL \)-algebra

2) Each stalk is a chain

3) For every \(x, y \in L \), there exists \(a \in B \) such that \(x \wedge a \leq y \) and \(y \wedge a' \leq x \).

4) For every \(x, y \in L \), there exists \(a \in B \) such that \(x \vee a \geq y \) and \(y \vee a' \geq x \).

PROOF. 2 \(\iff \) 3 is proved in ([15]) and 3 \(\iff \) 4 is clear. 1 \(\iff \) 2 follows from lemma 5.1.

6. POST ALGEBRAS.

The following definition is slightly different from that of Chang and Horn ([3]).

DEFINITION 6.1. By a generalized Post algebra, we mean the lattice \(C(Z, C) \) of all continuous maps of a Boolean space \(Z \) into a discrete bounded chain \(C \) where, the operations are pointwise.

THEOREM 6.2. The following are equivalent

1) \(L \) is a generalized Post algebra.

2) There exists a chain \(C \) in \(L \) such that the natural map \(c \mapsto c(p) : C \to \mathcal{J}_p \) is an isomorphism for all \(p \in X \).

3) There exists a chain \(C \) and, for each \(p \in X \), an order isomorphism \(\alpha_p : C \to \mathcal{J}_p \) such that for any \(c \in C \) and \(x \in L \), \(\{ p \in X / \alpha_p(c) = x(p) \} \) is open in \(X \).
PROOF. 1 \implies 2:

Let \(L = C(Z,D) \) where \(Z \) is a Boolean space and \(D \) is a discrete bounded chain. It is well known that a \(\ominus \) \(\chi_a \) is a Boolean isomorphism of the algebra of all clopen subsets of \(Z \) onto \(B \), the centre of \(L \), where \(\chi_a \) is the characteristic function on \(a \). We identify \(\chi_a \) with \(a \). Also the Stone space \(X \) is homeomorphic with \(Z \).

Let \(C \) be the set of all constant maps of \(Z \) into \(D \). For any \(d \in D \), let \(d \) denote the constant map which maps every element of \(Z \) onto \(d \). Then \(C \) is a chain in \(L \). Let \(p \in X \). Clearly, the natural map \(\emptyset_p : C \to J_p = L/\emptyset_p \) is a homomorphism.

If \(d_1, d_2 \in D \) such that \(\bar{d}_1(p) = \bar{d}_2(p) \) then \(\bar{d}_1 \wedge a = \bar{d}_2 \wedge a \) for some \(a \in B-p \) and hence \(d_1 = d_2 \). Now, let \(x \in L \). Then if \(p \in x^{-1}(d) \) for some \(d \in D \), since \(x : Z \to D \) is continuous, \(x^{-1}(d) \in B-p \) and since \(x \wedge x^{-1}(d) = \bar{d} \wedge x^{-1}(d) \), it follows that \((x,\bar{d}) \in \emptyset_p \). Hence \(\emptyset_p \) is an isomorphism.

2 \implies 3: If \(C \) is a chain in \(L \) and the natural map \(\emptyset_p : C \to J_p \) is an isomorphism for every \(p \in X \), then, for any \(c \in C \) and \(x \in L \) \(\{p \in X / \alpha_p(c) = x(p)\} \) which is open.

3 \implies 1: We first observe that since \(J_p \) is bounded and \(\alpha_p \) is an isomorphism of \(C \) onto \(J_p \), \(C \) is also bounded. Let \(X = \text{Spec } B \). Define \(\emptyset : L \to C(X,C) \) by \((\emptyset(x))(p) = \alpha_p^{-1}(x(p)) \) for each \(x \in L \) and \(p \in X \). Let \(c \in C \). Then

\[
(\emptyset(x))^{-1}(c) = \{p \in X / \alpha_p^{-1}(x(p)) = c\}
\]

\[
= \{p \in X / \alpha_p(c) = x(p)\}
\]

is open by (3) and hence \(\emptyset(x) \) is continuous. Clearly \(\emptyset \) is a homomorphism and one-one since \(\alpha_p^{-1} \) is so. Now, we will show that \(\emptyset \) is onto. Let \(f \in C(X,C) \). Define \(\sigma : X \to J \) by \(\sigma(p) = \alpha_p(f(p)) \) for every \(p \in X \). We will show that \(\sigma \) is a section. Let \(x \in L \) and \(a \in B \), then
\[\sigma^{-1}(x(a)) = \{ p \in a \mid \alpha_p(f(p)) = x(p) \} \]

\[= \bigcap_{c \in C} \bigcup \{ p \in X \mid f(p) = c \} \cap \{ p \in X \mid \alpha_p(c) = x(p) \}. \]

Since \(f \) is continuous, it follows that \(\sigma^{-1}(x(a)) \) is open. Since \(\{ x(a) / a \in B \) and \(x \in L \) is a base for the topology on \(X \), it follows that \(\sigma \) is continuous and clearly \(\pi \circ \sigma = \text{id}_X \). Therefore, \(\sigma = x \) for some \(x \in L \) and also \(\theta(x) = f \).

Hence \(\theta \) is an isomorphism and therefore \(L \) is a generalized Post algebra.

THEOREM 6.3. Let \(n \geq 2 \) and \(L \) a \(P \)-algebra. Then the following are equivalent.

1) \(L \) is a Post algebra of order \(n \).

2) \(\text{Spec } L \) is the disjoint union of maximal chains each with \(n-1 \) elements.

3) Each stalk is a chain with \(n \) elements.

PROOF. 1 \(\Rightarrow \) 2 is proved in (\[5\]).

Since \(L \) is a \(P \)-algebra, by theorem 4.4, each stalk \(\bigcup_p \), \(p \in X \), a chain. Also, by theorem 0.5, \(\text{Spec } L \) is the disjoint union of the chains \(\text{Spec } \bigcup_p \), \(p \in X \).

If \(\text{Spec } L \) is the disjoint union of all maximal chains \(C_\alpha \), \(\alpha \in \Delta \) each with \(n-1 \) elements, then, for any \(p \in X \), \(\text{Spec } \bigcup_p = C_\alpha \) for some \(\alpha \in \Delta \). Hence \(\text{Spec } \bigcup_p \) has \(n-1 \) elements and therefore \(\bigcup_p \) has \(n \) elements and hence (2) \(\Rightarrow \) (3).

Now, suppose each stalk is a chain with \(n \) elements and \(C_n \) is the \(n \)-element chain \(1 < 2 < \ldots < n \). For any \(p \in X \), let \(\bigcup_p = \{ 0(p) = x_{1p}(p) < x_{2p}(p) < \ldots < x_{np}(p) = 1(p) \} \) where \(x_{1p}, x_{2p}, \ldots, x_{np} \in L \). Define for any \(p \in X \),

\[\alpha_p : C_n \rightarrow X_p \) by \(\alpha_p(i) = x_{ip}(p) \) for each \(i \in C_n \). Clearly, \(\alpha_p \) is an order isomorphism. Let \(i \in C_n \), \(x \in L \) and \(p \in X \) such that \(\alpha_p(i) = x(p) \). i.e., \(x_{ip}(p) = x(p) \) so that there exists \(a \in B_p \) such that \(x_{ip}(q) = x(q) \) for all \(q \in a \). Since \(L \) is a \(B \)-algebra and \(x_{jp}(p) < x_{kp}(p) \) for all \(j < k \), by theorem 5.3, there exists \(b \in B_p \) such that \(x_{jp}(q) < x_{kp}(q) \) for all \(j < k \) and \(q \in b \) and hence \(x_{ip}(q) = x_{iq}(q) \) for all \(i \in C_n \) and \(q \in b \). Then \(p \in a \wedge b \in B \) and
for any $q \in a \land b$, $\alpha(q) = x_{1q}(q) = x_{1p}(q) = x(q)$. Hence $\{p \in X / \alpha(p) = x(p)\}$ is open for each $i \in C$ and $x \in L$.

DEFINITION 6.4. By a chain base C for L we mean a chain C with 0 in L such that L is generated by the centre B and C; i.e., every $x \in L$ can be written in the form $\bigvee_{i=1}^{n} (a_{i} \land c_{i})$ for some $a_{i} \in B$ and $c_{i} \in C$.

DEFINITION 6.5. A chain base C in L is said to be regular, if, for $c_{1} \neq c_{2} \in C$ and $a \in B$, $c_{1} < c_{2}$ and $a \land c_{2} \leq c_{1}$ imply $a = 0$.

It is proved in ([15]) that a bounded distributive lattice L is a generalized Post algebra if and only if there exists a regular chain base for L. Now, we characterize chain bases and regular chain bases in terms of the stalks. It is also proved in ([15]) that if C is a chain base for L, the natural map $\emptyset : C \rightarrow \bigvee_{p} \emptyset(p)$, defined by $\emptyset : c(p) = c(p)$ is an epimorphism for all $p \in X$. We prove the converse in the following.

THEOREM 6.6. Let C be a chain in L and $0 \in C$. Then $\emptyset : C \rightarrow \bigvee_{p} \emptyset(p)$ is an epimorphism for each $p \in X$, if and only if C is a chain base for L.

PROOF. Suppose $\emptyset : C \rightarrow \bigvee_{p} \emptyset(p)$ is an epimorphism for each $p \in X$ and let $x \in L$. For each $p \in X$, there exists $c_{p} \in C$ such that $\emptyset(p) = x(p)$ i.e., $c_{p}(p) = x(p)$, so that there exists $a \in B-p$ such that $c_{p} \land a = x \land a$. Therefore, there exists a partition $a_{1}, a_{2}, \ldots, a_{n}$ of B and $c_{1}, c_{2}, \ldots, c_{n} \in C$ such that $c_{1} \land a_{1} = x \land a_{1}$ so that $x = x \land 1 = x \land \bigvee_{i=1}^{n} a_{i} = \bigvee_{i=1}^{n} (x \land a_{i}) = \bigvee_{i=1}^{n} (c_{1} \land a_{1})$. Hence C is a chain base for L.

The following theorem is a straightforward verification.

THEOREM 6.7. Let C be a chain in L. Then the following are equivalent.

1) The natural map $\emptyset : C \rightarrow \bigvee_{p} \emptyset(p)$ is one for all $p \in X$.

2) For any $c_{1} \neq c_{2} \in C$ and $a \in B$, $c_{1} < c_{2}$ and $a \land c_{2} \leq c_{1}$ imply $a = 0$.

3) For any \(c_1 \neq c_2 \in C \) and \(0 \neq a \in B \), \(a \land c_1 \neq a \land c_2 \).

By summarizing the above results, we have the following:

THEOREM 6.8. Suppose \(L \) is a bounded distributive lattice. Then the following are equivalent.

1) \(L \) is a generalized Post algebra

2) There exists a chain \(C \) in \(L \) such that the natural map \(\emptyset : C \rightarrow \bigvee_p \) is an isomorphism for all \(p \in X \).

3) There exists a chain \(C \) and for each \(p \in X \), an order isomorphism \(\alpha_p : C \rightarrow \bigvee_p \) such that for any \(c \in C \) and \(x \in L \), \(\{ p \in X \mid \alpha_p(c) = x(p) \} \) is open in \(X \).

4) \(L \) has a regular chain base.

REMARK. The equivalence of (1) and (4) is established in ([15]) by using the Boolean extension techniques.

REFERENCES

Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be