SUMS OF SQUARES OF PURE QUATERNIONS

By PRZEMYSŁAW KOPROWSKI
Instytut Matematyki, Uniwersytet Śląski, 40-007 Katowice, Poland

[Received 22 July 1997. Read 29 November 1997. Published 30 September 1998.]

Abstract

We show that for each $k \geq 1$ there is a division quaternion algebra D of level $s(D) = 2^k$ such that -1 is not the sum of squares of 2^k pure quaternions in D. This answers a question asked by D. W. Lewis (Rocky Mountain Journal of Mathematics 19 (1989), 787–92).

The problem of determining the level of quaternion algebras was discussed by D. W. Lewis in [3] and D. B. Leep in [2]. The approach used by Lewis associates with a quaternion algebra $D = \left(\frac{a}{b} \right)$ the quadratic form $T_P = \langle a, b, -ab \rangle$ over the field F. Lewis has shown that, for any positive integer $n \in \mathbb{N}$, if $\langle 1 \rangle \perp nT_P$ is isotropic over F, then -1 is a sum of n squares of quaternions in D (see [3, lemma 4]). He commented on the converse of this implication and stated that it is true for $n = 2^k - 1$, $k \geq 2$, but for other values of n we do not know.

In this note we show that, in general, this converse statement is not true. We construct an explicit example of a quaternion algebra D over a formally real field K with the property that for $n = 2^k$, the element $-1 \in D$ is a sum of n squares in D, but the quadratic form $\langle 1 \rangle \perp nT_P$ is anisotropic over K. We also show that -1 cannot be expressed as a sum of $n-1$ squares in D.

We begin with a refinement of [3, lemma 4].

Lemma 1. Let n be any positive integer, $D = \left(\frac{a}{b} \right)$ and $T_P = \langle a, b, -ab \rangle$. Then the quadratic form $\langle 1 \rangle \perp nT_P$ is isotropic over F if and only if -1 can be expressed as a sum of n squares of pure quaternions in D.

Proof. This is implicit in [3, lemma 4] and [2, theorem 2.2]. But for the sake of completeness we sketch a proof.

The isotropicity of $\langle 1 \rangle \perp nT_P$ over F is equivalent to nT_P representing -1 over F, that is, to the existence of $q_1, r_1, s_1, \ldots, q_n, r_n, s_n \in F$ such that

$$-1 = T_P(q_1, r_1, s_1) + \cdots + T_P(q_n, r_n, s_n).$$

Since for a pure quaternion $c = qi + rj + sk$, we have $c^2 = T_P(q, r, s)$, such a representation of -1 exists if and only if there are pure quaternions $a_m = q_m i + r_m j + s_m k$, $1 \leq m \leq n$, satisfying

$$-1 = a_1^2 + \cdots + a_n^2,$$

as desired.

Mathematical Proceedings of the Royal Irish Academy, 98A (1), 63–65 (1998) © Royal Irish Academy