WEAK HOLOMORPHIC CONVERGENCE AND BOUNDING SETS IN BANACH SPACES

By

PABLO GALINDO
Departamento de Análisis Matemático, Universidad de Valencia

LUIZA A. MORAES
Instituto de Matemática, Universidade Federal do Rio de Janeiro

and

JORGE MUIICA
Instituto de Matemática, Universidade Estadual de Campinas

(Communicated by S. Dineen, M.R.I.A.)

[Received after revision 10 November 1997. Read 16 March 1998. Published 30 December 1998.]

Abstract
We show that weak holomorphic convergence and norm convergence coincide for sequences in a Banach space E if and only if every bounding subset of E is relatively compact.

Introduction

Let $\mathcal{H}(E)$ denote the vector space of all complex-valued holomorphic functions on a complex Banach space E. Following Petunin and Savkin [18] we say that a sequence (x_n) in E is $\mathcal{H}(E)$-convergent to a vector x in E if $f(x_n) \to f(x)$ for every f in $\mathcal{H}(E)$. Petunin and Savkin [18] proved that $\mathcal{H}(E)$-convergence and norm-convergence coincide for sequences in E if E is weakly compactly generated, in particular if E is separable or reflexive. On the other hand Aron, Choi and Llavona [3] showed that in ℓ^∞ these two convergence notions do not coincide. More precisely they showed that the sequence (e_n) of unit vectors $\mathcal{H}(\ell^\infty)$ converges to zero, but does not converge to zero in norm.

Following Alexander [1] we say that a set A in E is bounding if every f in $\mathcal{H}(E)$ is bounded on A. Hirschowitz [9] and Dineen [5] independently proved that every bounding set in E is relatively compact if E is separable and reflexive, and Schottenloher [21] remarked that the same conclusion holds if E is weakly compactly generated (see also [6, p. 178]). On the other hand Dineen [4] proved that the sequence (e_n) of unit vectors in ℓ^∞ is a bounding set that is not relatively compact (see also [6, theorem 4.31]).

Comparison of the aforementioned results suggests a close connection between the notions of $\mathcal{H}(E)$-convergence and bounding set. In this note we show that $\mathcal{H}(E)$-convergence and norm-convergence coincide for sequences in E if and only if
every bounding subset of E is relatively compact. We also establish a similar result for the notion of limited set.

Let us recall that a set $A \subseteq E$ is said to be limited if $\sup_{x \in A} |\varphi_n(x)| \to 0$ for every $\sigma(E',E)$-null sequence (φ_n) in E'. Limited sets were studied by Mazur [15], Gelfand [8] and Phillips [19] in the thirties, and were reinvented 40 years later by Josefson [11] under the name of weakly bounding sets. Bounding sets are limited, and Banach spaces whose limited sets are relatively compact are called Gelfand–Phillips spaces. It is known that a Banach space is a Gelfand–Phillips space if the closed unit ball of its dual is weak-star sequentially compact (see [14]), and in particular if the space is weakly compactly generated (see [2]). Nevertheless the Banach space constructed by Josefson in [12] is a non Gelfand–Phillips space whose bounding sets are relatively compact. See also Schlumprecht [20] for a related example.

Our terminology is standard. For background information on infinite dimensional complex analysis we refer to the books of Dineen [6] or Mujica [16].

1. Weak holomorphic convergence and bounding sets

Theorem 1.1. For a Banach space E the following conditions are equivalent:

(a) every bounding subset of E is relatively compact;

(b) a sequence (x_n) converges in E if and only if $(f(x_n))$ converges in \mathbb{C} for every $f \in \mathcal{H}(E)$.

Proof. Let \mathcal{S} denote the family of all strictly increasing sequences in \mathbb{N}. We remark that (x_n) is a Cauchy sequence in a topological vector space if and only if $x_{m_k} - x_{n_k} \to 0$ for each pair $(m_k), (n_k)$ in \mathcal{S}.

(a) \implies (b): Suppose $(f(x_n))$ converges for every $f \in \mathcal{H}(E)$. Then the sequence (x_n) is bounding, and therefore lies in a compact set K, by (a). Since $(f(x_n))$ is a Cauchy sequence, it follows that $f(x_{m_k}) - f(x_{n_k}) \to 0$ for each pair $(m_k), (n_k)$ in \mathcal{S}. In particular $x_{m_k} - x_{n_k} \to 0$ for the weak topology $\sigma(E', E)$. Since K is norm compact, the norm topology and the weak topology coincide on K, and therefore $\|x_{m_k} - x_{n_k}\| \to 0$ for each pair $(m_k), (n_k)$ in \mathcal{S}. Thus (x_n) is a Cauchy sequence in E, and therefore converges.

(b) \implies (a): Let A be a bounding subset of E, and let (x_n) be a sequence in A. Since every bounding set is limited, a result in [3] guarantees that (x_n) has a weakly Cauchy subsequence (x_{n_k}). Thus (x_{n_k}) is a limited, weakly Cauchy sequence and, by [7, corollary 2(iii)], $(P(x_{n_k}))$ converges for every continuous polynomial $P : E \to \mathbb{C}$.

Now let $f \in \mathcal{H}(E)$. Since the balanced hull of $2A$ is bounding (see [6, corollary 4.20]), it follows from the Cauchy integral formula (see [16, corollary 7.3]) that the Taylor series of f at the origin converges to f uniformly on A. Hence given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$|f(x) - \sum_{m=0}^{N} P^m f(0)(x)| \leq \varepsilon$$

for every $x \in A$. Since the sequence $(\sum_{m=0}^{N} P^m f(0)(x_{n_k}))_{k=1}^{\infty}$ converges, there exists
for all \(j, k \geq k_0 \). It follows that
\[
|f(x_j) - f(x_k)| \leq 3\varepsilon
\]
for all \(j, k \geq k_0 \). Thus \((f(x_n))\) converges for every \(f \in \mathcal{H}(E) \). By (b) \((x_n)\) converges in \(E \), and \(A \) is relatively compact.

Remarks 1.2. (a) Sequences cannot be replaced by nets in condition (b) of Theorem 1.1. Let us see why. On the one hand the Banach space \(E = c_0(I) \) is weakly compactly generated for every index set \(I \) (see [13]), and hence every bounding subset of \(E \) is relatively compact. On the other hand, for each \(f \in \mathcal{H}(E) \) there is a countable set \(J_f \subseteq I \) such that \(f(x) = f(0) \) whenever \(\|x\|_{J_f} = 0 \) (see [10]). Now let \(\alpha \) be an uncountable ordinal, and let \(I = [0, \alpha] \) be the set of all ordinals that are smaller than or equal to \(\alpha \). Then the net of unit vectors \((e_\beta)_{\beta \in I} \in \mathcal{H}(E)\) converges to zero. Indeed for each \(f \in \mathcal{H}(E) \) there is \(\beta_f < \alpha \) such that \(J_f \subseteq [0, \beta_f] \). Hence \(\|e_\beta\|_{J_f} = 0 \), and therefore \(f(e_\beta) = f(0) \), for every \(\beta > \beta_f \).

(b) The technique used in proving the implication (b) \(\Rightarrow \) (a) in Theorem 1.1 also shows that every \(f \in \mathcal{H}(E) \) is weakly continuous on bounding sets. Indeed it suffices to recall that every continuous polynomial \(P : E \to \mathbb{C} \) is weakly continuous on bounding sets (see [7, theorem 3]), and then approximate \(f \) by its Taylor series.

2. Weak holomorphic convergence and limited sets

Now we deal with a question analogous to that in Section 1 for limited sets.

Proposition 2.1 [5]. Let \((\varphi_n) \subseteq E' \). Then
\[
\sum_{n=1}^\infty (\varphi_n)^n \in \mathcal{H}(E) \text{ if and only if } \varphi_n \to 0 \text{ for } \sigma(E', E).
\]

Let \(\mathcal{D} = \{\sum_{n=1}^\infty (\varphi_n)^n : (\varphi_n) \subseteq E', \varphi_n \to 0 \text{ for } \sigma(E', E)\} \).

The next result is probably known, but since we did not find it in the literature, we include a proof for the convenience of the reader.

Proposition 2.2. A set \(A \subseteq E \) is limited if and only if every \(f \in \mathcal{D} \) is bounded on \(A \).

Proof. (\(\Rightarrow \)) Let \(f \in \mathcal{D} \), that is, \(f = \sum_{n=1}^\infty (\varphi_n)^n \), with \((\varphi_n) \subseteq E', \varphi_n \to 0 \) for \(\sigma(E', E) \). If \(A \) is limited, then there exists \(N \in \mathbb{N} \) such that \(|\varphi_n(x)| \leq 1/2 \) for all \(x \in A \) and \(n \geq N \). Hence
\[
|f(x)| \leq \sum_{n=1}^{N-1} |\varphi_n(x)|^n + \sum_{n=N}^\infty 2^{-n}
\]
for every \(x \in A \). Since \(A \) is weakly bounded, it follows that \(f \) is bounded on \(A \).
If \(A \) is not limited, then we can find a \(\sigma(E',E) \)-null sequence \((\varphi_n) \) in \(E' \) and a sequence \((a_n) \) in \(A \) such that \(|\varphi_n(a_n)| > 2 \) for every \(n \in \mathbb{N} \). We can then inductively find a strictly increasing sequence \((m_n) \subset \mathbb{N} \) such that

\[
|\varphi_n(a_n)|^{m_n} > n + 1 + \sum_{k<n} |\varphi_k(a_n)|^{m_k}
\]

for every \(n \in \mathbb{N} \). By Proposition 2.1 \(f = \sum_{n=1}^{\infty} (\varphi_n)^{m_n} \in \mathcal{H}(E) \) and \(|f(a_n)| > n \) for every \(n \in \mathbb{N} \). Thus \(f \in \mathcal{D} \) and \(f \) is unbounded on \(A \).

In view of Proposition 2.2, a straightforward adaptation of the proof of Theorem 1.1 yields the following theorem.

Theorem 2.3. For a Banach space \(E \) the following conditions are equivalent:

(a) every limited subset of \(E \) is relatively compact;

(b) a sequence \((x_n) \) converges in \(E \) if and only if \((f(x_n)) \) converges in \(C \) for every \(f \in \mathcal{D} \).

So far we have seen a certain analogy between bounding and limited sets. Our next proposition stresses that analogy. Here \(\tau_0 \) denotes the compact-open topology.

Proposition 2.4. A set \(A \subset E \) is bounding if and only if every null sequence in \((\mathcal{H}(E), \tau_0) \) converges to zero uniformly on \(A \).

Proof. \((\Rightarrow)\) Since \((f_n) \) is \(\tau_0 \)-bounded, it is uniformly bounded on \(2A \) (see [16, example 12.C] or [17, proposition 2.5]). Since we may assume that \(A \) is balanced, an application of the Cauchy integral formula shows that for each \(\varepsilon > 0 \) there is \(N \in \mathbb{N} \) such that

\[
|f_n(x) - \sum_{m=0}^{N} P^m f_n(0)(x)| \leq \varepsilon
\]

for all \(x \in A \) and \(n \in \mathbb{N} \). Since \(f_n \to 0 \) in \((\mathcal{H}(E), \tau_0) \), another application of the Cauchy integral formula shows that the sequence of polynomials \(\left(\sum_{m=0}^{N} P^m f_n(0) \right) \) converges to zero pointwise in \(E \), and thus converges to zero uniformly on \(A \), by [7, theorem 5]. Hence there is \(n_0 \in \mathbb{N} \) such that

\[
\left| \sum_{m=0}^{N} P^m f_n(0)(x) \right| \leq \varepsilon
\]

for all \(x \in A \) and \(n \geq n_0 \). It follows that \(|f_n(x)| \leq 2\varepsilon \) for all \(x \in A \) and \(n \geq n_0 \).

\((\Leftarrow)\) We first observe that the assumption implies that \(A \) is limited, and therefore bounded. And next we conclude that \(A \) is bounding by applying the assumption to the \(\tau_0 \)-null sequence \((f - \sum_{m=0}^{N} P^m f(0))_{N=1}^{\infty} \) for each \(f \in \mathcal{H}(E) \).
References

