A Knéser-Type Theorem for the Equation
\[x^{(m)} = f(t, x) \]
in Locally Convex Spaces

A. Szukała

Abstract. We shall give sufficient conditions for the existence of solutions of the Cauchy problem for the equation \(x^{(m)} = f(t, x) \). We also prove that the set of these solutions is a continuum.

Keywords: Differential equations, set of solutions, measures of non-compactness

AMS subject classification: 34G20

Let \(E \) be a quasicomplete locally convex topological vector space, and let \(P \) be a family of continuous seminorms generating the topology of \(E \). Assume that \(I = [0, a] \) and \(B = \{ x \in E : p_k(x) \leq b \ (i = 1, \ldots, k) \} \), where \(p_1, \ldots, p_k \in P \).

In this paper we investigate the existence of solutions and the structure of the set of solutions of the Cauchy problem

\[
\begin{align*}
 x^{(m)} &= f(t, x) \\
 x(0) &= 0 \\
 x'(0) &= \eta_1 \\
 & \vdots \\
 x^{(m-1)}(0) &= \eta_{m-1}
\end{align*}
\] (1)

where \(m \) is a positive integer, \(\eta_1, \eta_2, \ldots, \eta_{m-1} \in E \) and \(f \) is a bounded continuous function from \(I \times B \) into \(E \). Our considerations are a continuation of Szukała’s paper [8]. For other results concerning differential equations in locally convex spaces see [4].

Put

\[M = \sup \left\{ p_i(f(t, x)) : t \in I, x \in B, i = 1, \ldots, k \right\}. \]

Choose a positive number \(d \) such that \(d \leq a \) and

\[
\sum_{j=1}^{m-1} p_k(\eta_j) \frac{d^j}{j!} + M \frac{d^m}{m!} \leq b \quad (i = 1, \ldots, k). \] (2)
Let $J = [0, d]$. Denote by $C = C(J, E)$ the space of all continuous functions from J into E endowed with the topology of uniform convergence.

For any bounded subset A of E and $p \in P$ we denote by $\beta_p(A)$ the infimum of all $\varepsilon > 0$ for which there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of E such that $A \subset \{x_1, x_2, \ldots, x_n\} + B_p(\varepsilon)$, where $B_p(\varepsilon) = \{x \in E : p(x) \leq \varepsilon\}$. The family $(\beta_p(A))_{p \in P}$ is called the measure of non-compactness of A. It is known [6] that:

1° X is relatively compact in E \iff $\beta_p(X) = 0$ for every $p \in P$.
2° $X \subset Y$ \implies $\beta_p(X) \leq \beta_p(Y)$.
3° $\beta_p(X \cup Y) = \max\{\beta_p(X), \beta_p(Y)\}$.
4° $\beta_p(X + Y) \leq \beta_p(X) + \beta_p(Y)$.
5° $\beta_p(\lambda X) = |\lambda|\beta_p(X)$ ($\lambda \in \mathbb{R}$).
6° $\beta_p(X) = \beta_p(\tilde{X})$.
7° $\beta_p(\text{conv } X) = \beta_p(X)$.
8° $\beta_p(\cup_{0 \leq \lambda \leq h} \lambda X) = h\beta_p(X)$.

The following lemma is given in [8].

Lemma 1. Let H be a bounded countable subset of C. For each $t \in J$ put $H(t) = \{u(t) : u \in H\}$. If the space E is separable, then for each $p \in P$ the function $t \mapsto \beta_p(H(t))$ is integrable and

$$\beta_p \left(\left\{ \int_J u(s) \, ds : u \in H \right\} \right) \leq \int_J \beta_p(H(s)) \, ds.$$

Moreover, let us recall the following lemma from [9].

Lemma 2. Let $w : [0, 2b] \to \mathbb{R}_+$ be a continuous non-decreasing function and let $g : [0, c) \to [0, 2b]$ be a C^m-function satisfying the inequalities

$$g^{(j)}(t) \geq 0 \quad (j = 0, 1, \ldots, m)$$
$$g^{(j)}(0) = 0 \quad (j = 0, 1, \ldots, m - 1)$$
$$g^{(m)}(t) \leq w(g(t)) \quad (t \in [0, c)).$$

If $w(0) = 0$, $w(r) > 0$ for $r > 0$ and $\int_{0^+} (r^{m-1}w(r))^{-\frac{1}{m}} \, dr = \infty$, then $g = 0$.

We can now formulate our main result.

Theorem. Suppose that for each $p \in P$ there exists a continuous non-decreasing function $w_p : \mathbb{R}_+ \to \mathbb{R}_+$ such that $w_p(0) = 0$, $w_p(r) > 0$ for $r > 0$ and

$$\int_{0^+} \frac{dr}{\sqrt{r^{m-1}w_p(r)}} = \infty. \quad (3)$$

If

$$\beta_p(f(t, X)) \leq w_p(\beta_p(X)) \quad (4)$$
for \(p \in P, t \in I \) and bounded subsets \(X \) of \(E \), then the set \(S \) of all solutions of problem (1) defined on \(J \) is non-empty, compact and connected in \(C(J, E) \).

Proof. 1° Put

\[
 r(x) = \begin{cases}
 x \left(\frac{1}{K(x)} \right) & \text{for } x \in B \\
 x & \text{for } x \in E \setminus B
 \end{cases}
\]

and \(g(t, x) = f(t, r(x)) \) for \((t, x) \in J \times E\), where \(K \) is the Minkowski functional of \(B \). As \(B \) is a closed, balanced and convex neighbourhood of 0, from known properties of the Minkowski functional it follows that \(r \) is a continuous function from \(E \) into \(B \) and

\[
r(X) \subseteq \bigcup_{0 \leq \lambda \leq 1} \lambda X \quad \text{for any subset } X \text{ of } E.
\]

Thus \(\beta_p(r(X)) \leq \beta_p(X) \) for any \(p \in P \) and any bounded subset \(X \) of \(E \). Consequently, \(g \) is a bounded continuous function from \(J \times E \) into \(E \) such that

\[
 \beta_p(g(t, X)) \leq w_p(\beta_p(X)) \quad (4')
\]

for \(p \in P, t \in J \) and bounded subsets \(X \) of \(E \) and

\[
 p_i(g(t, x)) \leq M \quad (i = 1, \ldots, k; t \in J, x \in E). \quad (5)
\]

We introduce a mapping \(F \) defined by

\[
 F(x)(t) = q(t) + \frac{1}{(m-1)!} \int_0^t (t - s)^{m-1} g(s, x(s)) \, ds \quad (t \in J, x \in C)
\]

where \(q(t) = \sum_{j=1}^{m-1} \eta_j t^j \). It is known (cf. [2]) that \(F \) is a continuous mapping \(C \to C \) and the set \(F(C) \) is bounded and equicontinuous. It is clear from (1) and (5) that if \(x = F(x) \), then

\[
 p_i(x(t)) \leq \sum_{j=1}^{m-1} p_i(\eta_j) \frac{d^j}{j!} + \frac{1}{(m-1)!} \int_0^t (t - s)^{m-1} M \, ds
\]

\[
 \leq \sum_{j=1}^{m-1} p_i(\eta_j) \frac{d^j}{j!} + M \frac{d^m}{m!} \quad (i = 1, \ldots, k)
\]

\[
 \leq b
\]

so \(x(t) \in B \) for \(t \in J \). Therefore, a function \(x \in C \) is a solution of problem (1) if and only if \(x = F(x) \).

2° For any \(n \in \mathbb{N} \) put

\[
 u_n(t) = \begin{cases}
 0 & \text{if } 0 \leq t \leq \frac{d}{n} \\
 q(t - \frac{d}{n}) + \frac{1}{(m-1)!} \int_0^{t - \frac{d}{n}} (t - s)^{m-1} g(s, u_n(s)) \, ds & \text{if } \frac{d}{n} < t \leq d.
 \end{cases}
\]
Then \(u_n \) is a continuous function \(J \rightarrow B \) and
\[
\lim_{n \rightarrow \infty} (u_n(t) - F(u_n)(t)) = 0
\] (6)
uniformly for \(t \in J \). Let \(V = \{u_n : n \in \mathbb{N}\} \). From (6) it follows that the set \(\{u_n - F(u_n) : n \in \mathbb{N}\} \) is relatively compact in \(C \). Since
\[
V \subseteq \{u_n - F(u_n) : n \in \mathbb{N}\} + F(V)
\] (7)
and the set \(F(V) \) is bounded and equicontinuous, we conclude that the set \(V \) is also bounded and equicontinuous. Hence for each \(p \in P \) the function \(t \mapsto \beta_p(V(t)) \) is continuous on \(J \). Denote by \(H \) a closed separable subspace of \(E \) such that
\[
g(s, u_n(s)) \in H \quad (s \in J, n \in \mathbb{N}).
\]
Let \(\{\beta^H_p\}_{p \in P} \) be the measure of non-compactness in \(H \). Fix \(t \in J \) and \(p \in P \). From (4) we have
\[
\beta^H_p (g(s, V(s))) \leq 2\beta_p (g(s, V(s))) \leq 2w_p (\beta_p(V(s))) \quad (s \in [0, t]).
\]
By Lemma 1, we get
\[
\beta_p(F(V)(t)) = \beta_p \left(\left\{ \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} g(s, u_n(s)) \, ds : n \in \mathbb{N} \right\} \right)
\leq \beta^H_p \left(\left\{ \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} g(s, u_n(s)) \, ds : n \in \mathbb{N} \right\} \right)
\leq \frac{1}{(m-1)!} \int_0^t \beta^H_p \left(\left\{ (t-s)^{m-1} g(s, u_n(s)) : n \in \mathbb{N} \right\} \right) \, ds
= \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} \beta^H_p (g(s, V(s))) \, ds
\leq \frac{2}{(m-1)!} \int_0^t (t-s)^{m-1} w_p (\beta_p(V(s))) \, ds.
\]
On the other hand, from (6) and (7) we obtain
\[
\beta_p(V(t)) \leq \beta_p(F(V)(t))
\]
Hence
\[
\beta_p(V(t)) \leq \frac{2}{(m-1)!} \int_0^t (t-s)^{m-1} w_p (\beta_p(V(s))) \, ds \quad (t \in J, p \in P).
Putting
\[g(t) = \frac{2}{(m - 1)!} \int_0^t (t - s)^{m-1} w_p(\beta_p(V(s))) \, ds \]
we see that
\begin{align*}
&g \in C^m \\
&\beta_p(V(t)) \leq g(t) \\
&g^{(j)}(t) \geq 0 \text{ for } j = 0, 1, \ldots, m \\
&g^{(j)}(0) = 0 \text{ for } j = 0, 1, \ldots, m - 1 \\
&g^{(m)}(t) = 2w_p(\beta_p(V(t))) \leq 2w_p(g(t)) \text{ for } t \in J.
\end{align*}
Moreover, by (3),
\[\int_{0+} \frac{dr}{\sqrt{r^{m-1}2w_p(r)}} = \infty. \]
By Lemma 2 from this we deduce that \(g(t) = 0 \) for \(t \in J \). Thus \(\beta_p(V(t)) = 0 \) for \(t \in J \) and \(p \in P \). Therefore for each \(t \in J \) the set \(V(t) \) is relatively compact in \(E \). As the set \(V \) is equicontinuous, Ascoli’s theorem proves that \(V \) is relatively compact in \(C \). Hence the sequence \((u_n)\) has a limit point \(u \). As \(F \) is continuous from (6) we conclude that \(u = F(u) \), i.e. \(u \) is a solution of problem (1). This proves that the set \(S \) is non-empty.

3° Let us first remark that the set \(S \) is compact in \(C \). Indeed, as \((I - F)(S) = \{0\}\), in the same way as in Step 2°, we can prove that \(S \) is relatively compact in \(C \). Moreover, from the continuity of \(F \) it follows that \(S \) is closed in \(C \). Suppose that \(S \) is not connected. Thus there exist non-empty closed sets \(S_0 \) and \(S_1 \) such that \(S = S_0 \cup S_1 \) and \(S_0 \cap S_1 = \emptyset \). As \(S_0 \) and \(S_1 \) are compact subsets of \(C \) and \(C \) is a Tichonov space, this implies (see [3: §41, II, Remark 3]) the existence of a continuous function \(v : C \to [0,1] \) such that \(v(x) = 0 \) for \(x \in S_0 \) and \(v(x) = 1 \) for \(x \in S_1 \). Further, for any \(n \in \mathbb{N} \) we define a mapping \(F_n \) by
\[F_n(x)(t) = F(x)(r_n(t)) \quad (x \in C, t \in J) \]
where
\[r_n(t) = \begin{cases}
0 & \text{for } 0 \leq t \leq \frac{d}{n} \\
\frac{t - d}{n} & \text{for } \frac{d}{n} \leq t \leq d.
\end{cases} \]
It can be easily verified (cf. [10]) that:
\begin{enumerate}
\item \(F_n \) is a continuous mapping \(C \to C \).
\item \(\lim_{n \to \infty} F_n(x) = F(x) \) uniformly for \(x \in C \).
\item \(I - F_n \) is a homeomorphism \(C \to C \) (I - identity mapping).
\end{enumerate}
Fix \(u_0 \in S_0, u_1 \in S_1 \) and \(n \in \mathbb{N} \). Put
\[e_n(\lambda) = \lambda(u_1 - F_n(u_1)) + (1 - \lambda)(u_0 - F_n(u_0)) \quad (0 \leq \lambda \leq 1). \]
Let \(u_{n\lambda} = (I - F_n)^{-1}(e_n(\lambda)) \). As \(e_n(\lambda) \) depends continuously on \(\lambda \) and \(I - F_n \) is a homeomorphism, we see that the mapping \(\lambda \mapsto u(u_{n\lambda}) \) is continuous on \([0,1]\). Moreover,
$u_{n0} = u_0$ and $u_{n1} = u_1$, so that $v(u_{n0}) = 0$ and $v(u_{n1}) = 1$. Thus there exists $\lambda_n \in [0, 1]$ such that

$$v(u_{n\lambda_n}) = \frac{1}{2}. \quad (8)$$

For simplicity put $v_n = u_{n\lambda_n}$ and $V = \{v_n : n \geq 1\}$. Since $\lim_{n \to \infty} e_n(\lambda) = 0$ uniformly for $\lambda \in [0, 1]$, we get

$$\lim_{n \to \infty} (v_n - F(v_n)) = \lim_{n \to \infty} (e_n(\lambda) + F_n(v_n) - F(v_n)) = 0 \quad (9)$$

and therefore the set $(I-F)(V)$ is relatively compact in C. Using now a similar argument as in Step 2°, we can prove that the set V is relatively compact in C. Consequently, the sequence (v_n) has a limit point z. In view of (9) and the continuity of F, we infer that $z \in S$, so $v(z) = 0$ or $v(z) = 1$. On the other hand, from (8) it is clear that $v(z) = \frac{1}{2}$, which yields a contradiction. Thus S is connected.

References

Received 28.10.1998